Do you want to publish a course? Click here

The future of astronomy with small satellites

117   0   0.0 ( 0 )
 Added by Stephen Serjeant
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The number of small satellites has grown dramatically in the past decade from tens of satellites per year in the mid-2010s to a projection of tens of thousands in orbit by the mid-2020s. This presents both problems and opportunities for observational astronomy. Small satellites offer complementary cost-effective capabilities to both ground-based astronomy and larger space missions. Compared to ground-based astronomy, these advantages are not just in the accessibility of wavelength ranges where the Earths atmosphere is opaque, but also in stable, high precision photometry, long-term monitoring and improved areal coverage. Astronomy has a long history of new observational parameter spaces leading to major discoveries. Here we discuss the potential for small satellites to explore new parameter spaces in astrophysics, drawing on examples from current and proposed missions, and spanning a wide range of science goals from binary stars, exoplanets and solar system science to the early Universe and fundamental physics.

rate research

Read More

117 - Daniel J. Price 2015
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This diffusion approximation for dust is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using Smoothed Particle Hydrodynamics (SPH) that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.
The global climate crisis poses new risks to humanity, and with them, new challenges to the practices of professional astronomy. Avoiding the more catastrophic consequences of global warming by more than 1.5 degrees requires an immediate reduction of greenhouse gas emissions. According to the 2018 United Nations Intergovernmental Panel report, this will necessitate a 45% reduction of emissions by 2030 and net-zero emissions by 2050. Efforts are required at all levels, from the individual to the governmental, and every discipline must find ways to achieve these goals. This will be especially difficult for astronomy with its significant reliance on conference and research travel, among other impacts. However, our long-range planning exercises provide the means to coordinate our response on a variety of levels. We have the opportunity to lead by example, rising to the challenge rather than reacting to external constraints. We explore how astronomy can meet the challenge of a changing climate in clear and responsible ways, such as how we set expectations (for ourselves, our institutions, and our granting agencies) around scientific travel, the organization of conferences, and the design of our infrastructure. We also emphasize our role as reliable communicators of scientific information on a problem that is both human and planetary in scale.
For the first time in history, humans have reached the point where it is possible to construct a revolutionary space-based observatory that has the capability to find dozens of Earth-like worlds, and possibly some with signs of life. This same telescope, designed as a long-lived facility, would also produce transformational scientific advances in every area of astronomy and astrophysics from black hole physics to galaxy formation, from star and planet formation to the origins of the Solar System. The Association of Universities for Research in Astronomy (AURA) commissioned a study on a next-generation UVOIR space observatory with the highest possible scientific impact in the era following JWST. This community-based study focuses on the future space-based options for UV and optical astronomy that significantly advance our understanding of the origin and evolution of the cosmos and the life within it. The committee concludes that a space telescope equipped with a 12-meter class primary mirror can find and characterize dozens of Earth-like planets and make fundamental advances across nearly all fields of astrophysics. The concept is called the High Definition Space Telescope (HDST). The telescope would be located at the Sun-Earth L2 point and would cover a spectral range that, at a minimum, runs from 0.1 to 2 microns. Unlike JWST, HDST will not need to operate at cryogenic temperatures. HDST can be made to be serviceable on orbit but does not require servicing to complete its primary scientific objectives. We present the scientific and technical requirements for HDST and show that it could allow us to determine whether or not life is common outside the Solar System. We do not propose a specific design for such a telescope, but show that designing, building and funding such a facility is feasible beginning in the next decade - if the necessary strategic investments in technology begin now.
We present htof, an open-source tool for interpreting and fitting the intermediate astrometric data (IAD) from both the 1997 and 2007 reductions of Hipparcos, the scanning-law of Gaia, and future missions such as the Nancy Grace Roman Space Telescope (NGRST). htof solves for the astrometric parameters of any system for any arbitrary combination of absolute astrometric missions. In preparation for later Gaia data releases, htof supports arbitrarily high-order astrometric solutions (e.g. five-, seven-, nine-parameter fits). Using htof, we find that the IAD of 6617 sources in Hipparcos 2007 might have been affected by a data corruption issue. htof integrates an ad-hoc correction that reconciles the IAD of these sources with their published catalog solutions. We developed htof to study masses and orbital parameters of sub-stellar companions, and we outline its implementation in one orbit fitting code (orvara, https://github.com/t-brandt/orvara). We use htof to predict a range of hypothetical additional planets in the $beta$~Pic system, which could be detected by coupling NGRST astrometry with Gaia and Hipparcos. htof is pip installable and available at https://github.com/gmbrandt/htof .
Two new interplanetary technologies have advanced in the past decade to the point where they may enable exciting, affordable missions that reach further and faster deep into the outer regions of our solar system: (i) small and capable interplanetary spacecraft and (ii) light-driven sails. Combination of these two technologies could drastically reduce travel times within the solar system. We discuss a new paradigm that involves small and fast moving sailcraft that could enable exploration of distant regions of the solar system much sooner and faster than previously considered. We present some of the exciting science objectives for these miniaturized intelligent space systems that could lead to transformational advancements in the space sciences in the coming decade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا