Do you want to publish a course? Click here

A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

152   0   0.0 ( 0 )
 Added by Daniel Price
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This diffusion approximation for dust is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using Smoothed Particle Hydrodynamics (SPH) that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.



rate research

Read More

77 - Daniel J. Price 2020
We present a fix to the overdamping problem found by Laibe & Price (2012) when simulating strongly coupled dust-gas mixtures using two different sets of particles using smoothed particle hydrodynamics. Our solution is to compute the drag at the barycentre between gas and dust particle pairs when computing the drag force by reconstructing the velocity field, similar to the procedure in Godunov-type solvers. This fixes the overdamping problem at negligible computational cost, but with additional memory required to store velocity derivatives. We employ slope limiters to avoid spurious oscillations at shocks, finding the van Leer Monotonized Central limiter most effective.
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, H_2 chemistry, dust-gas mixtures, physical viscosity, external forces including numerous galactic potentials as well as implementations of Lense-Thirring precession, Poynting-Robertson drag and stochastic turbulent driving. Phantom is hereby made publicly available.
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
254 - Terrence S. Tricco 2019
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though there has yet to be a clear demonstration that SPH yields converged solutions that are in agreement with other methods. We have performed SPH simulations of the Kelvin-Helmholtz instability using the test problem put forward by Lecoanet et al (2016). We demonstrate that the SPH solutions converge to the reference solution in both the linear and non-linear regimes. Quantitative convergence in the strongly non-linear regime is achieved by using a physical Navier-Stokes viscosity and thermal conductivity. We conclude that standard SPH with an artificial viscosity can correctly capture the Kelvin-Helmholtz instability.
98 - Terrence S. Tricco 2019
We perform simulations of the Kelvin-Helmholtz instability using smoothed particle hydrodynamics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The smooth, well-posed initial conditions of Lecoanet et al. (2016) are used, along with an explicit Navier-Stokes viscosity and thermal conductivity to enforce the evolution in the non-linear regime. We demonstrate convergence to the reference solution using SPH. The evolution of the vortex structures and the degree of mixing, as measured by a passive scalar `colour field, match the reference solution. Tests with an initial density contrast produce the correct qualitative behaviour. The L2 error of the SPH calculations decreases as the resolution is increased. The primary source of error is numerical dissipation arising from artificial viscosity, and tests with reduced artificial viscosity have reduced L2 error. A high-order smoothing kernel is needed in order to resolve the initial velocity amplitude of the seeded mode and inhibit excitation of spurious modes. We find that standard SPH with an artificial viscosity has no difficulty in correctly modelling the Kelvin-Helmholtz instability and yields convergent solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا