Do you want to publish a course? Click here

Gigantic magnetochiral anisotropy in the topological semimetal ZrTe5

130   0   0.0 ( 0 )
 Added by Yoichi Ando
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological materials with broken inversion symmetry can give rise to nonreciprocal responses, such as the current rectification controlled by magnetic fields via magnetochiral anisotropy. Bulk nonreciprocal responses usually stem from relativistic corrections and are always found to be very small. A large magnetochiral anisotropy of novel origin has been proposed for topological semimetals, but no concrete example has been known so far. Here we report our discovery that ZrTe5 crystals in proximity to a topological quantum phase transition present gigantic magnetochiral anisotropy which is at least 1000 times larger than in any known material. We argue that a very low carrier density, inhomogeneities, and a torus-shaped Fermi surface induced by breaking of inversion symmetry in a Dirac material are central to explain this extraordinary property.

rate research

Read More

Wireless technology relies on the conversion of alternating electromagnetic fields to direct currents, a process known as rectification. While rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable highly controllable rectification have recently been discovered. One such effect is magnetochiral anisotropy (MCA), where the resistance of a material or a device depends on both the direction of current flow and an applied magnetic field. However, the size of rectification possible due to MCA is usually extremely small, because MCA relies on electronic inversion symmetry breaking which typically stems from intrinsic spin-orbit coupling - a relativistic effect - in a non-centrosymmetric environment. Here, to overcome this limitation, we artificially break inversion symmetry via an applied gate voltage in thin topological insulator (TI) nanowire heterostructures and theoretically predict that such a symmetry breaking can lead to a giant MCA effect. Our prediction is confirmed via experiments on thin bulk-insulating (Bi$_{1-x}$Sb$_{x}$)$_2$Te$_3$ TI nanowires, in which we observe the largest ever reported size of MCA rectification effect in a normal conductor - over 10000 times greater than in a typical material with a large MCA - and its behaviour is consistent with theory. Our findings present new opportunities for future technological applications of topological devices.
Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe$_5$. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe$_5$ is a topological insulator with a small band gap of $sim$25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long, $tau sim$160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
380 - E. J. Cheng , W. Xia , X. B. Shi 2019
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor.
We investigated the magnetoterahertz response of the Dirac semimetal Cd$_3$As$_2$ and observed a particularly low frequency optical phonon, as well as a very prominent and field sensitive cyclotron resonance. As the cyclotron frequency is tuned with field to pass through the phonon, the phonon become circularly polarized as shown by a notable splitting in their response to right- and left-hand polarized light. This splitting can be expressed as an effective phonon magnetic moment that is approximately 2.7 times the Bohr magneton, which is almost four orders of magnitude larger than ab initio calculations predict for phonon magnetic moments in nonmagnetic insulators. This exceedingly large value is due to the coupling of the phonons to the cyclotron motion and is controlled directly by the electron-phonon coupling constant. This field tunable circular-polarization selective coupling provides new functionality for nonlinear optics to create light-induced topological phases in Dirac semimetals.
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it is proposed that the three-dimensional Weyl semimetals can be further classified into two types. In the type I Weyl semimetals, a topologically protected linear crossing of two bands, i.e., a Weyl point, occurs at the Fermi level resulting in a point-like Fermi surface. In the type II Weyl semimetals, the Weyl point emerges from a contact of an electron and a hole pocket at the boundary resulting in a highly tilted Weyl cone. In type II Weyl semimetals, the Lorentz invariance is violated and a fundamentally new kind of Weyl Fermions is produced that leads to new physical properties. WTe2 is interesting because it exhibits anomalously large magnetoresistance. It has ignited a new excitement because it is proposed to be the first candidate of realizing type II Weyl Fermions. Here we report our angle-resolved photoemission (ARPES) evidence on identifying the type II Weyl Fermion state in WTe2. By utilizing our latest generation laser-based ARPES system with superior energy and momentum resolutions, we have revealed a full picture on the electronic structure of WTe2. Clear surface state has been identified and its connection with the bulk electronic states in the momentum and energy space shows a good agreement with the calculated band structures with the type II Weyl states. Our results provide spectroscopic evidence on the observation of type II Weyl states in WTe2. It has laid a foundation for further exploration of novel phenomena and physical properties in the type II Weyl semimetals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا