Do you want to publish a course? Click here

Evolution of magnetic deformation in neutron star crust

82   0   0.0 ( 0 )
 Added by Yasufumi Kojima
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we examine the magnetic field evolution occurring in a neutron star crust. Beyond the elastic limit, the lattice ions are assumed to act as a plastic flow. The Ohmic dissipation, Hall drift, and bulk fluid velocity driven by the Lorentz force are considered in our numerical simulation. A magnetically induced quadrupole deformation is observed in the crust during the evolution. Generally, the ellipticity decreases as the magnetic energy decreases. In a toroidal-field-dominated model, the sign of the ellipticity changes. Namely, the initial prolate shape tends to become oblate. This occurs because the toroidal component decays rapidly on a smaller timescale than the poloidal dipole component. We find that the magnetic dipole component does not change significantly on the Hall timescale of $sim 1$Myr for the considered simple initial models. Thus, a more complex initial model is required to study the fast decay of surface dipoles on the abovementioned timescale.



rate research

Read More

The strength of neutron star crust is crucial for modelling magnetar flares, pulsar glitches and gravitational wave emission. We aim to shed some light on this problem by analysing uniaxial stretch deformation (elongation and contraction) of perfect body-centered cubic Coulomb crystals, paying special attention to the inherent anisotropy of this process. Our analysis is based on the semi-analytical approach of Baiko and Kozhberov (2017), which, for any uniform deformation, allows one to calculate, in fully non-linear regime, critical deformation parameters beyond which the lattice loses its dynamic stability. We determine critical strain, pressure anisotropy and deformation energy for any stretch direction with respect to the crystallographic axes. These quantities are shown to be strongly anisotropic: they vary by a factor of almost 10 depending on the orientation of the deformation axis. For polycrystalline crust, we argue that the maximum strain for the stretch deformation sustainable elastically is 0.04. It is lower than the breaking strain of 0.1 obtained in molecular dynamic simulations of a shear deformation by Horowitz and Kadau (2009). The maximum pressure anisotropy of polycrystalline matter is estimated to be in the range from 0.005 to 0.014 $nZ^2e^2/a$, where $n$ is the ion number density, $Ze$ is the ion charge, and $a$ is the ion-sphere radius. We discuss possible mechanisms of plastic motion and formation of large crystallites in neutron star crust as well as analyse energy release associated with breaking of such crystallites in the context of magnetic field evolution and magnetar flaring activity.
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its magnetic field determines the appearance of a neutron star. Thus, understanding the field properties is important for interpretation of observational data. Complementing this, observations of diverse kinds of neutron stars enable us to probe parameters of electro-dynamical processes at scales unavailable in terrestrial laboratories. In this review we first briefly describe theoretical models of formation and evolution of magnetic field of neutron stars, paying special attention to field decay processes. Then we present important observational results related to field properties of different types of compact objects: magnetars, cooling neutron stars, radio pulsars, sources in binary systems. After that, we discuss which observations can shed light on obscure characteristics of neutron star magnetic fields and their behaviour. We end the review with a subjective list of open problems.
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagnetic observations of the binary neutron star merger GW170817 gave invaluable insights into these cataclysmic collisions, probing bulk nuclear matter at supranuclear densities, the jet structure of gamma-ray bursts, the speed of gravity, and the cosmological evolution of the local Universe, among other things. Despite the wealth of information, it is still unclear when the remnant of GW170817 collapsed to form a black hole. Evidence from other short gamma-ray bursts indicates a large fraction of mergers may form long-lived neutron stars. We review what is known observationally and theoretically about binary neutron star post-merger remnants. From a theoretical perspective, we review our understanding of the evolution of short- and long-lived merger remnants, including fluid, magnetic-field, and temperature evolution. These considerations impact prospects of detection of gravitational waves from either short- or long-lived neutron star remnants which potentially allows for new probes into the hot nuclear equation of state in conditions inaccessible in terrestrial experiments. We also review prospects for determining post-merger physics from current and future electromagnetic observations, including kilonovae and late-time x-ray and radio afterglow observations.
We examine the equilibrium of a magnetized neutron-star-crust. We calculate axially symmetric models in which an elastic force balances solenoidal motion driven by a Lorentz force. A large variety of equilibrium models are allowed by incorporating the elastic shear deformation; in addition, toroidal-magnetic-field dominated models are available. These results remarkably differ from those in barotropic fluid stars. We demonstrate some models wherein the magnetic energy exceeds the elastic energy. The excess comes from the fact that a large amount of magnetic energy is associated with the irrotational part of the magnetic force, which is balanced with gravity and pressure. It is sufficient for equilibrium models that the minor solenoidal part is balanced by a weak elastic force. We find that the elasticity in the crust plays an important role on the magnetic-field confinement. Further, we present the spatial distribution of the shear-stress at the elastic limit, by which the crust-fracture location can be identified. The result has useful implications for realistic crust-quake models.
To make best use of multi-faceted astronomical and nuclear data-sets, probability distributions of neutron star models that can be used to propagate errors consistently from one domain to another are required. We take steps toward a consistent model for this purpose, highlight where model inconsistencies occur and assess the resulting model uncertainty. Using two distributions of nuclear symmetry energy parameters - one uniform, the other based on pure neutron matter theory, we prepare two ensembles of neutron star inner crust models. We use an extended Skyrme energy-density functional within a compressible liquid drop model (CLDM). We fit the surface parameters of the CLDM to quantum 3D Hartree-Fock calculations of crustal nuclei. All models predict more than 50% of the crust by mass and 15% of the crust by thickness comprises pasta with medians of around 62% and 30% respectively. We also present 68% and 95% ranges for the crust composition as a function of density. We examine the relationships between crust-core boundary and pasta transition properties, the thickness of the pasta layers, the symmetry energy at saturation and sub-saturation densities and the neutron skins of 208Pb and 48Ca. We quantify the correlations using the maximal information coefficient, which can effectively characterize non-linear relationships. Future measurements of neutron skins, information from nuclear masses and giant resonances, and theoretical constraints on PNM will be able to place constraints on the location of the pasta and crust-core boundaries and the amount of pasta in the crust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا