Do you want to publish a course? Click here

Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO & SFR data

86   0   0.0 ( 0 )
 Added by Adam Stevens
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine how the post-processed content of molecular hydrogen (H$_2$) in galaxies from the TNG100 cosmological, hydrodynamic simulation changes with environment at $z!=!0$, assessing central/satellite status and host halo mass. We make close comparisons with the carbon monoxide (CO) emission survey xCOLD GASS where possible, having mock-observed TNG100 galaxies to match the surveys specifications. For a representative sample of host haloes across $10^{11}!lesssim!M_{rm 200c}/{rm M}_{odot}!<!10^{14.6}$, TNG100 predicts that satellites with $m_*!geq!10^9,{rm M}_{odot}$ should have a median deficit in their H$_2$ fractions of $sim$0.6 dex relative to centrals of the same stellar mass. Once observational and group-finding uncertainties are accounted for, the signature of this deficit decreases to $sim$0.2 dex. Remarkably, we calculate a deficit in xCOLD GASS satellites H$_2$ content relative to centrals of 0.2--0.3 dex, in line with our prediction. We further show that TNG100 and SDSS data exhibit continuous declines in the average star formation rates of galaxies at fixed stellar mass in denser environments, in quantitative agreement with each other. By tracking satellites from their moment of infall in TNG100, we directly show that atomic hydrogen (HI) is depleted at fractionally higher rates than H$_2$ on average. Supporting this picture, we find that the H$_2$/HI mass ratios of satellites are elevated relative to centrals in xCOLD GASS. We provide additional predictions for the effect of environment on H$_2$ -- both absolute and relative to HI -- that can be tested with spectral stacking in future CO surveys.



rate research

Read More

We present the full public release of all data from the TNG50, TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Arepo. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive blackholes from early time to the present day, z=0. Each of the flagship runs -- TNG50, TNG100, and TNG300 -- are accompanied by lower-resolution and dark-matter only counterparts, and we discuss scientific and numerical cautions and caveats relevant when using TNG. Full volume snapshots are available at 100 redshifts; halo and subhalo catalogs at each snapshot and merger trees are also released. The data volume now directly accessible online is ~1.1 PB, including 2,000 full volume snapshots and ~110,000 high time-resolution subbox snapshots. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform which supports user computation with fully local access to TNG data, alleviating the need to download large simulated datasets.
170 - B. S. Koribalski 2020
Here I briefly highlight our studies of the gas content, kinematics and star formation in nearby dwarf galaxies (D < 10 Mpc) based on the `Local Volume HI Survey (LVHIS, Koribalski et al. 2018), which was conducted with the Australia Telescope Compact Array (ATCA). The LVHIS sample consists of nearly 100 galaxies, including new discoveries, spanning a large diversity in size, shape, mass and degree of peculiarity. The hydrogen properties of dwarf galaxies in two nearby groups, Sculptor and CenA / M83, are analysed and compared with many rather isolated dwarf galaxies. Around 10% of LVHIS galaxies are transitional or mixed-type dwarf galaxies (dIrr/dSph), the formation of which is explored. - I also provide a brief update on WALLABY Early Science, where we focus on studying the HI properties of galaxies as a function of environment. WALLABY (Dec < +30 degr, z < 0.26) is conducted with the Australian SKA Pathfinder (ASKAP), a 6-km diameter array of 36 x 12-m dishes, each equipped with wide-field (30 sq degr) Chequerboard Phased Array Feeds.
We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (HI and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the HI and H2 content of IllustrisTNG galaxies to observations. We mostly restrict this comparison to $z approx 0$ and consider six observational metrics: the overall abundance of HI and H2, their mass functions, gas fractions as a function of stellar mass, the correlation between H2 and star formation rate, the spatial distribution of gas, and the correlation between gas content and morphology. We find generally good agreement between simulations and observations, particularly for the gas fractions and the HI mass-size relation. The H2 mass correlates with star formation rate as expected, revealing an almost constant depletion time that evolves up to z = 2 as observed. However, we also discover a number of tensions with varying degrees of significance, including an overestimate of the total neutral gas abundance at z = 0 by about a factor of two and a possible excess of satellites with no or very little neutral gas. These conclusions are robust to the modelling of the HI/H2 transition. In terms of their neutral gas properties, the IllustrisTNG simulations represent an enormous improvement over the original Illustris run. All data used in this paper are publicly available as part of the IllustrisTNG data release.
We investigate the abundance of galactic molecular hydrogen (H$_2$) in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-processing using two different prescriptions that depend on the local dust-to-gas ratio and the interstellar radiation field. Both result in H$_2$ galaxy mass functions that agree well with observations in the local and high-redshift Universe. The simulations reproduce the observed scaling relations between the mass of H$_2$ and the stellar mass, star formation rate and stellar surface density. Towards high edshifts, galaxies in the simulations display larger H$_2$ mass fractions, and correspondingly lower H$_2$ depletion timescales, also in good agreement with observations. The comoving mass density of H$_2$ in units of the critical density, $Omega_{rm H_2}$, peaks at $zapprox 1.2-1.5$, later than the predicted peak of the cosmic star formation rate activity, at $zapprox 2$. This difference stems from the decrease in gas metallicity and increase in interstellar radiation field with redshift, both of which hamper H$_2$ formation. We find that the cosmic H$_2$ budget is dominated by galaxies with $M_{rm H_2}>10^9,rm M_{odot}$, star formation rates $>10,rm M_{odot},rm yr^{-1}$ and stellar masses $M_{rm stellar}>10^{10},rm M_{odot}$, which are readily observable in the optical and near-IR. The match between the H$_2$ properties of galaxies that emerge in the simulations and observations is remarkable, particularly since H$_2$ observations were not used to adjust parameters in EAGLE.
118 - R. Decarli , C. Carilli , C. Casey 2018
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtually any $z>1.5$, thus exposing the evolution of gaseous reservoirs from the earliest epochs down to the peak of the cosmic history of star formation. The order-of-magnitude improvement in the number of CO detections with respect to state-of-the-art observational campaigns will provide a unique insight on the evolution of galaxies through cosmic time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا