No Arabic abstract
While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic $n$-dimensional ordinary differential equations. Assuming $R < 1$, where $R$ is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity $T^2mathrm{poly}(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time and $epsilon$ is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in $T$. We achieve this improvement using the method of Carleman linearization, for which we give a novel convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for $R ge sqrt{2}$. Finally, we discuss potential applications of this approach to problems arising in biology as well as in fluid and plasma dynamics.
Quantum computers are known to provide an exponential advantage over classical computers for the solution of linear differential equations in high-dimensional spaces. Here, we present a quantum algorithm for the solution of nonlinear differential equations. The quantum algorithm provides an exponential advantage over classical algorithms for solving nonlinear differential equations. Potential applications include the Navier-Stokes equation, plasma hydrodynamics, epidemiology, and more.
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity $mathrm{poly}(1/epsilon)$, where $epsilon$ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be $mathrm{poly}(d, log(1/epsilon))$, where $d$ is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.
Inspired by recent progress in quantum algorithms for ordinary and partial differential equations, we study quantum algorithms for stochastic differential equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic speed-up for multilevel Monte Carlo methods in a general setting. As applications, we apply it to compute expectation values determined by classical solutions of SDEs, with improved dependence on precision. We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance, such as the Black-Scholes and Local Volatility models, and Greeks. We also provide a quantum algorithm based on sublinear binomial sampling for the binomial option pricing model with the same improvement.
Given the Hamiltonian, the evaluation of unitary operators has been at the heart of many quantum algorithms. Motivated by existing deterministic and random methods, we present a hybrid approach, where Hamiltonians with large amplitude are evaluated at each time step, while the remaining terms are evaluated at random. The bound for the mean square error is obtained, together with a concentration bound. The mean square error consists of a variance term and a bias term, arising respectively from the random sampling of the Hamiltonian terms and the operator splitting error. Leveraging on the bias/variance trade-off, the error can be minimized by balancing the two. The concentration bound provides an estimate on the number of gates. The estimates are verified by using numerical experiments on classical computers.
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations of the form $Ax = b$. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called Ansatz tree. The CQS approach and the Ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as $2^{300} times 2^{300}$ by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. These experiments demonstrate the algorithms ability to scale to system sizes within reach in near-term quantum devices of about $100$-$300$ qubits.