Do you want to publish a course? Click here

Near-term quantum algorithms for linear systems of equations

93   0   0.0 ( 0 )
 Added by Hsin-Yuan Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations of the form $Ax = b$. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called Ansatz tree. The CQS approach and the Ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as $2^{300} times 2^{300}$ by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. These experiments demonstrate the algorithms ability to scale to system sizes within reach in near-term quantum devices of about $100$-$300$ qubits.



rate research

Read More

Finding solutions to systems of linear equations is a common prob-lem in many areas of science and engineering, with much potential for a speedup on quantum devices. While the Harrow-Hassidim-Lloyd (HHL) quantum algorithm yields up to an exponential speed-up over classical algorithms in some cases, it requires a fault-tolerant quantum computer, which is unlikely to be available in the near term. Thus, attention has turned to the investigation of quantum algorithms for noisy intermediate-scale quantum (NISQ) devices where several near-term approaches to solving systems of linear equations have been proposed. This paper focuses on the Variational Quantum Linear Solvers (VQLS), and other closely related methods. This paper makes several contributions that include: the first application of the Evolutionary Ansatz to the VQLS (EAVQLS), the first implementation of the Logical Ansatz VQLS (LAVQLS), based on the Classical Combination of Quantum States (CQS) method, the first proof of principle demonstration of the CQS method on real quantum hardware and a method for the implementation of the Adiabatic Ansatz (AAVQLS). These approaches are implemented and contrasted.
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a data structure for $x$ allowing sampling and querying to the entries, where $x$ is such that $|x - A^{-1}b|leq epsilon |A^{-1}b|$. This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is $widetilde{O}(kappa_F^6 kappa^2/epsilon^2 )$, where $kappa_F = |A|_F|A^{-1}|$ and $kappa = |A||A^{-1}|$. This improves the previous best algorithm [Gily{e}n, Song and Tang, arXiv:2009.07268] of complexity $widetilde{O}(kappa_F^6 kappa^6/epsilon^4)$. Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when $A$ is row sparse, this method already returns an approximate solution $x$ in time $widetilde{O}(kappa_F^2)$, while the best quantum algorithm known returns $ket{x}$ in time $widetilde{O}(kappa_F)$ when $A$ is stored in the QRAM data structure. As a result, assuming access to QRAM and if $A$ is row sparse, the speedup based on current quantum algorithms is quadratic.
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity $mathrm{poly}(1/epsilon)$, where $epsilon$ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be $mathrm{poly}(d, log(1/epsilon))$, where $d$ is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.
Efficient sampling from a classical Gibbs distribution is an important computational problem with applications ranging from statistical physics over Monte Carlo and optimization algorithms to machine learning. We introduce a family of quantum algorithms that provide unbiased samples by preparing a state encoding the entire Gibbs distribution. We show that this approach leads to a speedup over a classical Markov chain algorithm for several examples including the Ising model and sampling from weighted independent sets of two different graphs. Our approach connects computational complexity with phase transitions, providing a physical interpretation of quantum speedup. Moreover, it opens the door to exploring potentially useful sampling algorithms on near-term quantum devices as the algorithm for sampling from independent sets on certain graphs can be naturally implemented using Rydberg atom arrays.
Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a quantum computer. Firstly, for generalized eigenvalue problems (GEPs) $Ax = lambda Bx$ with $A,B$ symmetric, and $B$ positive definite, we give a quantum algorithm based on block-encoding and quantum phase estimation. In a more general case when $B$ is invertible, $B^{-1}A$ is diagonalizable and all the eigenvalues are real, we propose a quantum algorithm based on the Fourier spectral method to solve ordinary differential equations (ODEs). The inputs of our algorithms can be any desired states, and the outputs are superpositions of the eigenpairs. The complexities are polylog in the matrix size and linear in the precision. The dependence on precision is optimal. Secondly, we show that when $B$ is singular, any quantum algorithm uses at least $Omega(sqrt{n})$ queries to compute the eigenvalues, where $n$ is the matrix size. Thirdly, based on the linearization method and the connection between PEPs and higher-order ODEs, we provide two quantum algorithms to solve PEPs by extending the quantum algorithm for GEPs. We also give detailed complexity analysis of the algorithm for two special types of quadratic eigenvalue problems that are important in practice. Finally, under an extra assumption, we propose a quantum algorithm to solve PEPs when the eigenvalues are complex.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا