Do you want to publish a course? Click here

ULSD: Unified Line Segment Detection across Pinhole, Fisheye, and Spherical Cameras

143   0   0.0 ( 0 )
 Added by Hao Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Line segment detection is essential for high-level tasks in computer vision and robotics. Currently, most stateof-the-art (SOTA) methods are dedicated to detecting straight line segments in undistorted pinhole images, thus distortions on fisheye or spherical images may largely degenerate their performance. Targeting at the unified line segment detection (ULSD) for both distorted and undistorted images, we propose to represent line segments with the Bezier curve model. Then the line segment detection is tackled by the Bezier curve regression with an end-to-end network, which is model-free and without any undistortion preprocessing. Experimental results on the pinhole, fisheye, and spherical image datasets validate the superiority of the proposed ULSD to the SOTA methods both in accuracy and efficiency (40.6fps for pinhole images). The source code is available at https://github.com/lh9171338/Unified-LineSegment-Detection.



rate research

Read More

In this paper, we introduce a moving object detection algorithm for fisheye cameras used in autonomous driving. We reformulate the three commonly used constraints in rectilinear images (epipolar, positive depth and positive height constraints) to spherical coordinates which is invariant to specific camera configuration once the calibration is known. One of the main challenging use case in autonomous driving is to detect parallel moving objects which suffer from motion-parallax ambiguity. To alleviate this, we formulate an additional fourth constraint, called the anti-parallel constraint, which aids the detection of objects with motion that mirrors the ego-vehicle possible. We analyze the proposed algorithm in different scenarios and demonstrate that it works effectively operating directly on fisheye images.
105 - Nan Xue , Song Bai , Fu-Dong Wang 2019
This paper presents regional attraction of line segment maps, and hereby poses the problem of line segment detection (LSD) as a problem of region coloring. Given a line segment map, the proposed regional attraction first establishes the relationship between line segments and regions in the image lattice. Based on this, the line segment map is equivalently transformed to an attraction field map (AFM), which can be remapped to a set of line segments without loss of information. Accordingly, we develop an end-to-end framework to learn attraction field maps for raw input images, followed by a squeeze module to detect line segments. Apart from existing works, the proposed detector properly handles the local ambiguity and does not rely on the accurate identification of edge pixels. Comprehensive experiments on the Wireframe dataset and the YorkUrban dataset demonstrate the superiority of our method. In particular, we achieve an F-measure of 0.831 on the Wireframe dataset, advancing the state-of-the-art performance by 10.3 percent.
In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and an encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention. In our experiments, we show state-of-the-art results on Wireframe and YorkUrban benchmarks.
This paper presents a generic 6DOF camera pose estimation method, which can be used for both the pinhole camera and the fish-eye camera. Different from existing methods, relative positions of 3D points rather than absolute coordinates in the world coordinate system are employed in our method, and it has a unique solution. The application scope of POSIT (Pose from Orthography and Scaling with Iteration) algorithm is generalized to fish-eye cameras by combining with the radially symmetric projection model. The image point relationship between the pinhole camera and the fish-eye camera is derived based on their projection model. The general pose expression which fits for different cameras can be acquired by four noncoplanar object points and their corresponding image points. Accurate estimation results are calculated iteratively. Experimental results on synthetic and real data show that the pose estimation results of our method are more stable and accurate than state-of-the-art methods. The source code is available at https://github.com/k032131/EPOSIT.
Marker-based and marker-less optical skeletal motion-capture methods use an outside-in arrangement of cameras placed around a scene, with viewpoints converging on the center. They often create discomfort by possibly needed marker suits, and their recording volume is severely restricted and often constrained to indoor scenes with controlled backgrounds. Alternative suit-based systems use several inertial measurement units or an exoskeleton to capture motion. This makes capturing independent of a confined volume, but requires substantial, often constraining, and hard to set up body instrumentation. We therefore propose a new method for real-time, marker-less and egocentric motion capture which estimates the full-body skeleton pose from a lightweight stereo pair of fisheye cameras that are attached to a helmet or virtual reality headset. It combines the strength of a new generative pose estimation framework for fisheye views with a ConvNet-based body-part detector trained on a large new dataset. Our inside-in method captures full-body motion in general indoor and outdoor scenes, and also crowded scenes with many people in close vicinity. The captured user can freely move around, which enables reconstruction of larger-scale activities and is particularly useful in virtual reality to freely roam and interact, while seeing the fully motion-captured virtual body.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا