Do you want to publish a course? Click here

Iterative Retina for high track multiplicity in a barrel-shape tracker and high magnetic field

66   0   0.0 ( 0 )
 Added by Wendi Deng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Real-time track tracking in high energy physics experiments at colliders running at high luminosity is very challenging for trigger systems. To perform pattern-recognition and track fitting in online trigger system, the artificial Retina algorithm has been introduced in the field. Retina can be implemented in the state of the art FPGA devices. Our developments use Retina in an iterative way to identify track for barrel-shape tracker embedded in a high magnetic field and with high track multiplicity. As a benchmark we simulate LHC t-tbar events, with a pile-up of 200 and a GEANT-4 based simulation of a 6-layers barrel tracker detector made of silicon modules. With this sample the performance of the hardware design (resource usage, latency) is evaluated. Both efficiency and purity of the Retina fitting are over 90%. Moreover we have also added a Kalman filter after the Retina fit to improve the resolution on the track parameters. Our simulation results show that the Kalman filter can work well together with the Retina algorithm to find track through t-tbar event and provides high resolutions of the reconstructed parameters.



rate research

Read More

239 - N. Neri , A. Abba , F. Caponio 2014
We report on the R&D for a first prototype of a silicon tracker based on an alternative approach for fast track finding. The working principle is inspired from neurobiology, in particular by the processing of visual images by the brain as it happens in nature. It is based on extensive parallelisation of data distribution and pattern recognition. In this work we present the design of a practical device that consists of a telescope based on single-sided silicon detectors; we describe the data acquisition system and the implementation of the track finding algorithms using available digital logic of commercial FPGA devices. Tracking performance and trigger capabilities of the device are discussed along with perspectives for future applications.
For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of $40,rm MHz$. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.
We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at $40,rm MHz$, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particles activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.
This article describes a new charged-particle track fitting algorithm designed for use in high-speed electronics applications such as hardware-based triggers in high-energy physics experiments. Following a novel technique designed for fast electronics, the positions of the hits on the detector are transformed before being passed to a linearized track parameter fit. This transformation results in fitted track parameters with a very linear dependence on the hit positions. The approach is demonstrated in a representative detector geometry based on the CMS detector at the Large Hadron Collider. The fit is implemented in FPGA chips and optimized for track fitting throughput and obtains excellent track parameter performance. Such an algorithm is potentially useful in any high-speed track-fitting application.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا