Do you want to publish a course? Click here

Clusterization transition between cluster Mott insulators on a breathing Kagom{e} lattice

84   0   0.0 ( 0 )
 Added by Gang Chen Professor
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent experimental progress on various cluster Mott insulators, we study an extended Hubbard model on a breathing Kagom{e} lattice with a single electron orbital and $1/6$ electron filling. Two distinct types of cluster localization are found in the cluster Mott regime due to the presence of the electron repulsion between neighboring sites, rather than from the on-site Hubbard interaction in the conventional Mott insulators. We introduce a unified parton construction framework to accommodate both type of cluster Mott insulating phase as well as a trivial Ferm liquid metal and discuss the phase transitions in the phase diagram. It is shown that, in one of the cluster localization phases, the strong inter-site repulsion results into locally metallic behavior within one of two triangular clusters on the breathing Kagom{e} lattice. We further comment on experimental relevance to existing Mo-based cluster magnets.



rate research

Read More

Microscopic spin interactions on a deformed Kagom{e} lattice of volborthite are investigated through magnetoelastic couplings. A negative longitudinal magnetostriction $Delta L<0$ in the $b$ axis is observed, which depends on the magnetization $M$ with a peculiar relation of $Delta L/L propto M^{1.3}$. Based on the exchange striction model, it is argued that the negative magnetostriction originates from a pantograph-like lattice change of the Cu-O-Cu chain in the $b$ axis, and that the peculiar dependence arises from the local spin correlation. This idea is supported by DFT+$U$ calculations simulating the lattice change and a finite-size calculation of the spin correlation, indicating that the recently proposed coupled-trimer model is a plausible one.
Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagome lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
101 - Saikat Banerjee , Umesh Kumar , 2021
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theory. In the Mott insulators with inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single- and multi-orbital Hubbard model that is relevant for the Kitaev quantum spin liquid materials and demonstrate that the magnetic interactions can be tuned by light.
The search for materials with novel and unusual electronic properties is at the heart of condensed matter physics as well as the basis to develop conceptual new technologies. In this context, the correlated honeycomb transition metal oxides attract large attention for both, being a possible experimental realization of the theoretically predicted magnetic Kitaev exchange and the theoretical prospect of topological nontriviality. The Mott insulating sodium iridate is prototypical among these materials with the promising prospect to bridge the field of strongly correlated systems with topology, finally opening a path to a wide band gap material with exotic surface properties. Here, we report a profound study of the electronic properties of ultra-high-vacuum cleaved surfaces combining transport measurements with scanning tunneling techniques, showing that multiple conductive channels with differing nature are simultaneously apparent in this material. Most importantly, a V-shaped density of states and a low sheet resistance, in spite of a large defect concentration, point towards a topologically protected surface conductivity contribution. By incorporating the issue of the addressability of electronic states in the tunneling process, we develop a framework connecting previous experimental results as well as theoretical considerations.
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard $U$, at robust Hunds coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا