Do you want to publish a course? Click here

Quantum phase transition between orbital-selective Mott states in Hunds metals

180   0   0.0 ( 0 )
 Added by Julian Rincon
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard $U$, at robust Hunds coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.



rate research

Read More

We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spectroscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
We analyze the electronic properties of interacting crystal field split three band systems. Using a rotationally invariant slave boson approach we analyze the behavior of the electronic mass renormalization as a function of the intralevel repulsion $U$, the Hunds coupling $J$, the crystal field splitting, and the number of electrons per site $n$. We first focus on the case in which two of the bands are identical and the levels of the third one are shifted by $Delta>0$ with respect to the former. We find an increasing quasiparticle mass differentiation between the bands, for system away from half-filling ($n=3$), as the Hubbard interaction $U$ is increased. This leads to orbital selective Mott transitions where either the higher energy band (for $4>n>3$) or the lower energy degenerate bands ($2<n<3$) become insulating for $U$ larger than a critical interaction $U_{c}(n)$. Away from the half-filled case $|n-3|gtrsim 0.3$ there is a wide range of parameters for $U<U_c(n)$ where the system presents a Hunds metal phase with the physics dominated by the local high spin multiplets. Finally, we study the fate of the $n=2$ Hunds metal as the energy splitting between orbitals is increased for different possible crystal distortions. We find a strong sensitivity of the Hunds metal regime to crystal fields due to the opposing effects of $J$ and the crystal field splittings on the charge distribution between the bands.
Topological phases of matter are among the most intriguing research directions in Condensed Matter Physics. It is known that superconductivity induced on a topological insulators surface can lead to exotic Majorana modes, the main ingredient of many proposed quantum computation schemes. In this context, the iron-based high critical temperature superconductors are a promising platform to host such an exotic phenomenon in real condensed-matter compounds. The Coulomb interaction is commonly believed to be vital for the magnetic and superconducting properties of these systems. This work bridges these two perspectives and shows that the Coulomb interaction can also drive a canonical superconductor with orbital degrees of freedom into the topological state. Namely, we show that above a critical value of the Hubbard interaction the system simultaneously develops spiral spin order, a highly unusual triplet amplitude in superconductivity, and, remarkably, Majorana fermions at the edges of the system.
We outline a general mechanism for Orbital-selective Mott transition (OSMT), the coexistence of both itinerant and localized conduction electrons, and show how it can take place in a wide range of realistic situations, even for bands of identical width and correlation, provided a crystal field splits the energy levels in manifolds with different degeneracies and the exchange coupling is large enough to reduce orbital fluctuations. The mechanism relies on the different kinetic energy in manifolds with different degeneracy. This phase has Curie-Weiss susceptibility and non Fermi-liquid behavior, which disappear at a critical doping, all of which is reminiscent of the physics of the pnictides.
The orbital-selective Mott phase (OSMP) of multiorbital Hubbard models has been extensively analyzed before using static and dynamical mean-field approximations. In parallel, the properties of Block states (antiferromagnetically coupled ferromagnetic spin clusters) in Fe-based superconductors have also been much discussed. The present effort uses numerically exact techniques in one-dimensional systems to report the observation of Block states within the OSMP regime, connecting two seemingly independent areas of research, and providing analogies with the physics of Double-Exchange models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا