Do you want to publish a course? Click here

The impact of pre-main sequence stellar evolution on midplane snowline locations and C/O in planet forming discs

88   0   0.0 ( 0 )
 Added by James Miley
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the impact of pre-main sequence stellar luminosity evolution on the thermal and chemical properties of disc midplanes. We create template disc models exemplifying initial conditions for giant planet formation for a variety of stellar masses and ages. These models include the 2D physical structure of gas as well as 1D chemical structure in the disc midplane. The disc temperature profiles are calculated using fully physically consistent radiative transfer models for stars between 0.5 and 3 Msun and ages up to 10 Myr. The resulting temperature profiles are used to determine how the chemical conditions in the mid-plane change over time. We therefore obtain gas and ice-phase abundances of the main carbon and oxygen carrier species. While the temperature profiles produced are not markedly different for the stars of different masses at early stages (<1 Myr), they start to diverge significantly beyond 2 Myr. Discs around stars with mass >1.5 Msun become warmer over time as the stellar luminosity increases, whereas low-mass stars decrease in luminosity leading to cooler discs. This has an observable effect on the location of the CO snowline, which is located >200 au in most models for a 3 Msun star, but is always within 80 au for 0.5 Msun star. The chemical compositions calculated show that a well defined stellar mass and age range exists in which high C/O gas giants can form. In the case of the exoplanet HR8799b, our models show it must have formed before the star was 1 Myr old.



rate research

Read More

The elemental composition of the gas and dust in a protoplanetary disk influences the compositions of the planets that form in it. We use the Molecules with ALMA at Planet-forming Scales (MAPS) data to constrain the elemental composition of the gas at the locations of potentially forming planets. The elemental abundances are inferred by comparing source-specific gas-grain thermochemical models, with variable C/O ratios and small-grain abundances, from the DALI code with CO and C2H column densities derived from the high-resolution observations of the disks of AS 209, HD 163296, and MWC 480. Elevated C/O ratios (~2.0), even within the CO ice line, are necessary to match the inferred C2H column densities, over most of the pebble disk. Combined with constraints on the CO abundances in these systems, this implies that both the O/H and C/H ratios in the gas are substellar by a factor of 4-10, with the O/H depleted by a factor of 20-50, resulting in the high C/O ratios. This necessitates that even within the CO ice line, most of the volatile carbon and oxygen is still trapped on grains in the midplane. Planets accreting gas in the gaps of the AS 209, HD 163296, and MWC 480 disks will thus acquire very little carbon and oxygen after reaching the pebble isolation mass. In the absence of atmosphere-enriching events, these planets would thus have a strongly substellar O/H and C/H and superstellar C/O atmospheric composition.
115 - O. Panic , M. Min 2017
Temperature changes in the planet forming disc midplanes carry important physico-chemical consequences, such as the effect on the locations of the condensation fronts of molecules - the snowlines. Snowlines impose major chemical gradients and possibly foster grain growth. The aim of this paper is to understand how disc midplane temperature changes with gas and dust evolution, and identify trends that may influence planet formation or allow to constrain disc evolution observationally. We calculate disc temperature, hydrostatic equilibrium and dust settling in a mutually consistent way from a grid of disc models at different stages of gas loss, grain growth and hole opening. We find that the CO snowline location depends very strongly on disc properties. The CO snowline location migrates closer to the star for increasing degrees of gas dispersal and dust growth. Around a typical A type star, the snowline can be anywhere between several tens and a few hundred au, depending on the disc properties such as gas mass and grain size. In fact, gas loss is as efficient as dust evolution in settling discs, and flat discs may be gas-poor counterparts of flared discs. Our results, in the context of different pre-main sequence evolution of the luminosity in low- and intermediate-mass stars suggests very different thermal (and hence chemical) histories in these two types of discs. Discs of T Tauri stars settle and cool down while discs of Herbig Ae stars may remain rather warm throughout the pre-main sequence.
We report the detection of V1298 Tau b, a warm Jupiter-sized planet ($R_P$ = 0.91 $pm$ 0.05~ $R_mathrm{Jup}$, $P = 24.1$ days) transiting a young solar analog with an estimated age of 23 million years. The star and its planet belong to Group 29, a young association in the foreground of the Taurus-Auriga star-forming region. While hot Jupiters have been previously reported around young stars, those planets are non-transiting and near-term atmospheric characterization is not feasible. The V1298 Tau system is a compelling target for follow-up study through transmission spectroscopy and Doppler tomography owing to the transit depth (0.5%), host star brightness ($K_s$ = 8.1 mag), and rapid stellar rotation ($vsin{i}$ = 23 kms). Although the planet is Jupiter-sized, its mass is presently unknown due to high-amplitude radial velocity jitter. Nevertheless, V1298 Tau b may help constrain formation scenarios for at least one class of close-in exoplanets, providing a window into the nascent evolution of planetary interiors and atmospheres.
AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.
Millimetre continuum observations of debris discs can provide insights into the physical and dynamical properties of the unseen planetesimals that these discs host. The material properties and collisional models of planetesimals leave their signature on the grain size distribution, which can be traced through the millimetre spectral index. We present 8.8 mm observations of the debris discs HD 48370, CPD 72 2713, HD 131488, and HD 32297 using the Australian Telescope Compact Array (ATCA) as part of the PLanetesimals Around TYpicalPre-main seqUence Stars (PLATYPUS) survey. We detect all four targets with a characteristic beam size of 5 arcseconds and derive a grain size distribution parameter that is consistent with collisional cascade models and theoretical predictions for parent planetesimal bodies where binding is dominated by self-gravity. We combine our sample with 19 other millimetre-wavelength detected debris discs from the literature and calculate a weighted mean grain size power law index which is close to analytical predictions for a classical steady state collisional cascade model. We suggest the possibility of two distributions of q in our debris disc sample; a broad distribution (where q is approximately 3.2 to 3.7) for typical debris discs (gas-poor/non-detection), and a narrow distribution (where q is less than 3.2) for bright gas-rich discs. Or alternatively, we suggest that there exists an observational bias between the grain size distribution parameter and absolute flux which may be attributed to the detection rates of faint debris discs at cm wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا