Do you want to publish a course? Click here

Fault Detection for Covered Conductors With High-Frequency Voltage Signals: From Local Patterns to Global Features

232   0   0.0 ( 0 )
 Added by Kunjin Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The detection and characterization of partial discharge (PD) are crucial for the insulation diagnosis of overhead lines with covered conductors. With the release of a large dataset containing thousands of naturally obtained high-frequency voltage signals, data-driven analysis of fault-related PD patterns on an unprecedented scale becomes viable. The high diversity of PD patterns and background noise interferences motivates us to design an innovative pulse shape characterization method based on clustering techniques, which can dynamically identify a set of representative PD-related pulses. Capitalizing on those pulses as referential patterns, we construct insightful features and develop a novel machine learning model with a superior detection performance for early-stage covered conductor faults. The presented model outperforms the winning model in a Kaggle competition and provides the state-of-the-art solution to detect real-time disturbances in the field.



rate research

Read More

50 - Mathieu Mezache 2019
Given nonstationary data, one generally wants to extract the trend from the noise by smoothing or filtering. However, it is often important to delineate a third intermediate category, that we call high frequency (HF) features: this is the case in our motivating example, which consists in experimental measurements of the time-dynamics of depolymerising protein fibrils average size. One may intuitively visualise HF features as the presence of fast, possibly nonstationary and transient oscillations, distinct from a slowly-varying trend envelope. The aim of this article is to propose an empirical definition of HF features and construct estimators and statistical tests for their presence accordingly, when the data consists of a noisy nonstationary 1-dimensional signal. We propose a parametric characterization in the Fourier domain of the HF features by defining a maximal amplitude and distance to low frequencies of significant energy. We introduce a data-driven procedure to estimate these parameters, and compute a p-value proxy based on a statistical test for the presence of HF features. The test is first conducted on simulated signals where the ratio amplitude of the HF features to the level of the noise is controlled. The test detects HF features even when the level of noise is five times larger than the amplitude of the oscillations. In a second part, the test is conducted on experimental data from Prion disease experiments and it confirms the presence of HF features in these signals with significant confidence.
136 - Rui Fan , Tianzhixi Yin 2019
This letter presents a novel high impedance fault (HIF) detection approach using a convolutional neural network (CNN). Compared to traditional artificial neural networks, a CNN offers translation invariance and it can accurately detect HIFs in spite of variance and noise in the input data. A transfer learning method is used to address the common challenge of a system with little training data. Extensive studies have demonstrated the accuracy and effectiveness of using a CNNbased approach for HIF detection.
In this paper, we propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals that are subject to a high level of nonlinear distortion. Specifically, a novel deep learning based convolutional neural network receiver is devised, containing layers in both time- and frequency domains, allowing to demodulate and decode the transmitted bits reliably despite the high error vector magnitude (EVM) in the transmit signal. Extensive set of numerical results is provided, in the context of 5G NR uplink incorporating also measured terminal power amplifier characteristics. The obtained results show that the proposed receiver system is able to clearly outperform classical linear receivers as well as existing ML receiver approaches, especially when the EVM is high in comparison with modulation order. The proposed ML receiver can thus facilitate pushing the terminal power amplifier (PA) systems deeper into saturation, and thereon improve the terminal power-efficiency, radiated power and network coverage.
The cost of wind energy can be reduced by using SCADA data to detect faults in wind turbine components. Normal behavior models are one of the main fault detection approaches, but there is a lack of consensus in how different input features affect the results. In this work, a new taxonomy based on the causal relations between the input features and the target is presented. Based on this taxonomy, the impact of different input feature configurations on the modelling and fault detection performance is evaluated. To this end, a framework that formulates the detection of faults as a classification problem is also presented.
Cough is a common symptom of respiratory and lung diseases. Cough detection is important to prevent, assess and control epidemic, such as COVID-19. This paper proposes a model to detect cough events from cough audio signals. The models are trained by the dataset combined ESC-50 dataset with self-recorded cough recordings. The test dataset contains inpatient cough recordings collected from inpatients of the respiratory disease department in Ruijin Hospital. We totally build 15 cough detection models based on different feature numbers selected by Random Frog, Uninformative Variable Elimination (UVE), and Variable influence on projection (VIP) algorithms respectively. The optimal model is based on 20 features selected from Mel Frequency Cepstral Coefficients (MFCC) features by UVE algorithm and classified with Support Vector Machine (SVM) linear two-class classifier. The best cough detection model realizes the accuracy, recall, precision and F1-score with 94.9%, 97.1%, 93.1% and 0.95 respectively. Its excellent performance with fewer dimensionality of the feature vector shows the potential of being applied to mobile devices, such as smartphones, thus making cough detection remote and non-contact.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا