Do you want to publish a course? Click here

Coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry

225   0   0.0 ( 0 )
 Added by Menglin L.N. Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry, which is composed of three interlacing triangular sublattices with the same lattice constants. By tuning the geometry of the sublattices, three complete photonic band gaps with nontrivial topology can be created, one of which is due to the band inversion associated with the pseudospin degree of freedom at the $Gamma$ point and the other two due to the gapping out of Dirac cones associated with the valley degree of freedom at the $K, K$ points. The system can support tri-band pseudospin- and valley-momentum locking edge states at properly designed domain-wall interfaces. Furthermore, to demonstrate the novel interplay of the two kinds of edge states in a single configuration, we design a four-channel system, where the unidirectional routing of electromagnetic waves against sharp bends between two routes can be selectively controlled by the pseudospin and valley degrees of freedom. Our work combines the pseudospin and valley degrees of freedom in a single configuration and may provide more flexibility in manipulating electromagnetic waves with promising potential for multiband and multifunctional applications.



rate research

Read More

Topologically protected gapless edge states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with topological corner states have been theoretically predicted in electric systems, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic systems, electrical circuits, optical and sonic crystals, and elastic phononic plates. Here, we demonstrate a pseudospin-valley-coupled phononic TI, which simultaneously exhibits gapped edge states and topological corner states. Pseudospin-orbit coupling edge states and valley-polarized edge state are respectively induced by the lattice deformation and the symmetry breaking. When both of them coexist, these topological edge states will be greatly gapped and the topological corner state emerges. Under direct field measurements, the robust edge propagation behaving as an elastic waveguide and the topological corner mode working as a robust localized resonance are experimentally confirmed. The pseudospin-valley coupling in our phononic TIs can be well-controlled which provides a reconfigurable platform for the multiple edge and corner states, and exhibits well applications in the topological elastic energy recovery and the highly sensitive sensing.
We investigate Rabi-like oscillations of topological valley Hall edge states by introducing two zigzag domain walls in an inversion-symmetry-breaking honeycomb photonic lattice. Such resonant oscillations are stimulated by weak periodic modulation of the lattice depth along the propagation direction that does not affect the overall symmetry and the band topology of the lattice. Oscillations are accompanied by periodic switching between edge states with the same Bloch momentum, but located at different domain walls. Switching period and efficiency are the nonmonotonic functions of the Bloch momentum in the Brillouin zone. We discuss how efficiency of this resonant process depends on detuning of modulation frequency from resonant value. Switching of nonlinear edge states is also briefly discussed. Our work brings about an effective approach to accomplish resonant oscillations of the valley Hall edge states in time-reversal-invariant topological insulators.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
Photonic structures offer unique opportunities for controlling light-matter interaction, including the photonic spin Hall effect associated with the transverse spin-dependent displacement of light that propagates in specially designed optical media. However, due to small spin-orbit coupling, the photonic spin Hall effect is usually weak at the nanoscale. Here we suggest theoretically and demonstrate experimentally, in both optics and microwave experiments, the photonic spin Hall effect enhanced by topologically protected edge states in subwavelength arrays of resonant dielectric particles. Based on direct near-field measurements, we observe the selective excitation of the topological edge states controlled by the handedness of the incident light. Additionally, we reveal the main requirements to the symmetry of photonic structures to achieve a topology-enhanced spin Hall effect, and also analyse the robustness of the photonic edge states against the long-ranged coupling.
327 - Rui Xi , Qiaolu Chen , Qinghui Yan 2021
Topological valley photonics has emerged as a new frontier in photonics with many promising applications. Previous valley boundary transport relies on kink states at internal boundaries between two topologically distinct domains. However, recent studies have revealed a novel class of topological chiral edge states (CESs) at external boundaries of valley materials, which have remained elusive in photonics. Here, we propose and experimentally demonstrate the topological CESs in valley photonic metamaterials (VPMMs) by accurately tuning on-site edge potentials. Moreover, the VPMMs work at deep-subwavelength scales. Thus, the supported CESs are highly confined and self-guiding without relying on a cladding layer to prevent leakage radiation. Via direct near-field measurements, we observe the bulk bandgap, the edge dispersions, and the robust edge transport passing through sharp corners, which are hallmarks of the CESs. Our work paves a way to explore novel topological edge states in valley photonics and sheds light on robust and miniaturized photonic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا