Do you want to publish a course? Click here

Topological chiral edge states in deep-subwavelength valley photonic metamaterials

328   0   0.0 ( 0 )
 Added by Rui Xi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological valley photonics has emerged as a new frontier in photonics with many promising applications. Previous valley boundary transport relies on kink states at internal boundaries between two topologically distinct domains. However, recent studies have revealed a novel class of topological chiral edge states (CESs) at external boundaries of valley materials, which have remained elusive in photonics. Here, we propose and experimentally demonstrate the topological CESs in valley photonic metamaterials (VPMMs) by accurately tuning on-site edge potentials. Moreover, the VPMMs work at deep-subwavelength scales. Thus, the supported CESs are highly confined and self-guiding without relying on a cladding layer to prevent leakage radiation. Via direct near-field measurements, we observe the bulk bandgap, the edge dispersions, and the robust edge transport passing through sharp corners, which are hallmarks of the CESs. Our work paves a way to explore novel topological edge states in valley photonics and sheds light on robust and miniaturized photonic devices.



rate research

Read More

379 - Jingwen Ma , Xiang Xi , 2019
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and routing of valley-polarized photons in integrated circuits. Specifically, we show that at the domain wall between photonic crystals of different topological valley phases, there exists a topologically protected valley kink state that is backscattering-free at sharp bends and terminals. We further harnessed these valley kink states for constructing high-Q topological photonic crystal cavities with tortuously shaped cavity geometries. We also demonstrated a novel optical routing scheme at an intersection of multiple valley kink states, where light splits counterintuitively due to the valley pseudospin of photons. These results will not only lead to robust optical communication and signal processing, but also open the door for fundamental research of topological photonics in areas such as lasing, quantum photon-pair generation, and optomechanics.
Topological valley kink states have become a significant research frontier with considerable intriguing applications such as robust on-chip communications and topological lasers. Unlike guided modes with adjustable widths in most conventional waveguides, the valley kink states are usually highly confined around the domain walls and thus lack the mode width degree of freedom (DOF), posing a serious limitation to potential device applications. Here, by adding a photonic crystal (PhC) featuring a Dirac point between two valley PhCs with opposite valley-Chern numbers, we design and experimentally demonstrate topological valley-locked waveguides (TVLWs) with tunable mode widths. The photoinc TVLWs could find unique applications, such as high-energy-capacity topological channel intersections, valley-locked energy concentrators, and topological cavities with designable confinement, as verified numerically and experimentally. The TVLWs with width DOF could be beneficial to interface with the exsisting photonic waveguides and devices, and serve as a novel platform for practical use of topological lasing, field enhancement, on-chip communicaitons, and high-capacity energy transport.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
Photonic structures offer unique opportunities for controlling light-matter interaction, including the photonic spin Hall effect associated with the transverse spin-dependent displacement of light that propagates in specially designed optical media. However, due to small spin-orbit coupling, the photonic spin Hall effect is usually weak at the nanoscale. Here we suggest theoretically and demonstrate experimentally, in both optics and microwave experiments, the photonic spin Hall effect enhanced by topologically protected edge states in subwavelength arrays of resonant dielectric particles. Based on direct near-field measurements, we observe the selective excitation of the topological edge states controlled by the handedness of the incident light. Additionally, we reveal the main requirements to the symmetry of photonic structures to achieve a topology-enhanced spin Hall effect, and also analyse the robustness of the photonic edge states against the long-ranged coupling.
Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا