No Arabic abstract
We consider the problem of extrapolating the perturbation series for the dilute Fermi gas in three dimensions to the unitary limit of infinite scattering length and into the BEC region, using the available strong-coupling information to constrain the extrapolation problem. In this constrained extrapolation problem (CEP) the goal is to find classes of approximants that give well converged results already for low perturbative truncation orders. First, we show that standard Pad{e} and Borel methods are too restrictive to give satisfactory results for this CEP. A generalization of Borel extrapolation is given by the so-called Maximum Entropy extrapolation method (MaxEnt). However, we show that MaxEnt requires extensive elaborations to be applicable to the dilute Fermi gas and is thus not practical for the CEP in this case. Instead, we propose order-dependent-mapping extrapolation (ODME) as a simple, practical, and general method for the CEP. We find that the ODME approximants for the ground-state energy of the dilute Fermi gas are robust with respect to changes of the mapping choice and agree with results from quantum Monte Carlo simulations within uncertainties.
We develop a method that uses truncation-order-dependent re-expansions constrained by generic strong-coupling information to extrapolate perturbation series to the nonperturbative regime. The method is first benchmarked against a zero-dimensional model field theory and then applied to the dilute Fermi gas in one and three dimensions. Overall, our method significantly outperforms Pade and Borel extrapolations in these examples. The results for the ground-state energy of the three-dimensional Fermi gas are robust with respect to changes of the form of the re-expansion and compare well with quantum Monte Carlo simulations throughout the BCS regime and beyond.
We discuss high-order calculations in perturbative effective field theory for fermions at low energy scales. The Fermi-momentum or $k_{rm F} a_s$ expansion for the ground-state energy of the dilute Fermi gas is calculated to fourth order, both in cutoff regularization and in dimensional regularization. For the case of spin one-half fermions we find from a Bayesian analysis that the expansion is well-converged at this order for ${| k_{rm F} a_s | lesssim 0.5}$. Further, we show that Pad{e}-Borel resummations can improve the convergence for ${| k_{rm F} a_s | lesssim 1}$. Our results provide important constraints for nonperturbative calculations of ultracold atoms and dilute neutron matter.
We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, including the classic reweighting method, alternative Hubbard-Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case.
We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.
We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techniques. We thus obtain estimates for critical values of the temperature, mass and spin imbalance, above which the system is in the normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that an intriguing relation exists between the general structure of the many-body phase diagram and the binding energies of the underlying two-body bound-state problem, which further supports our findings. Our results suggest that inhomogeneous condensates form for mass ratios of the spin-down and spin-up fermions greater than three. The extent of the inhomogeneous phase in parameter space increases with increasing mass imbalance.