No Arabic abstract
We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, including the classic reweighting method, alternative Hubbard-Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case.
The recent progress in understanding the mathematics of complex stochastic quantization, as well as its application to quantum chromodynamics in situations that have a complex phase problem (e.g. finite quark density, real time), has opened up an intriguing possibility for non-relativistic many-body physics which has so far remained largely unexplored. In this brief contribution, I review a few specific examples of advances in the characterization of the thermodynamics of non-relativistic matter in a variety of one-dimensional cases affected by the sign problem: repulsive interactions, finite polarization, finite mass imbalance, and projection to finite systems to obtain virial coefficients.
It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and familiarity, nearly all quantum many-body calculations have been performed on simple cubic lattices. Since the removal of lattice artifacts is often an important concern, it would be useful to perform calculations using more than one lattice geometry. In this work we show how to perform quantum many-body calculations using auxiliary-field Monte Carlo simulations on a three-dimensional body-centered cubic (BCC) lattice. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down fermions in the unitary limit, which is an idealized limit where the interaction range is zero and scattering length is infinite. As a fraction of the free Fermi gas energy $E_{rm FG}$, we find that the ground state energy is $E_0/E_{rm FG}= 0.369(2), 0.371(2),$ using two different definitions of the finite-system energy ratio. This is in excellent agreement with recent results obtained on a cubic lattice cite{He:2019ipt}. We find that the computational effort and performance on a BCC lattice is approximately the same as that for a cubic lattice with the same number of lattice points. We discuss how the lattice simulations with different geometries can be used to constrain the size lattice artifacts in simulations of continuum quantum many-body systems.
We calculate the finite-temperature density and polarization equations of state of one-dimensional fermions with a zero-range interaction, considering both attractive and repulsive regimes. In the path-integral formulation of the grand-canonical ensemble, a finite chemical potential asymmetry makes these systems intractable for standard Monte Carlo approaches due to the sign problem. Although the latter can be removed in one spatial dimension, we consider the one-dimensional situation in the present work to provide an efficient test for studies of the higher-dimensional counterparts. To overcome the sign problem, we use the complex Langevin approach, which we compare here with other approaches: imaginary-polarization studies, third-order perturbation theory, and the third-order virial expansion. We find very good qualitative and quantitative agreement across all methods in the regimes studied, which supports their validity.
We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform Gauss-Hermite lattice approach. Using those two methods, we compute the ground-state energy and spatial density profile for systems of N=4 - 8 harmonically trapped fermions in one dimension. From the favorable comparison of both energies and density profiles (particularly in regions of low density), we conclude that the trapping potential is properly resolved by the hard-wall basis. Our work paves the way to higher dimensions and finite temperature analyses, as calculations with the hard-wall basis can be accelerated via fast Fourier transforms, the cost of unaccelerated methods is otherwise prohibitive due to the unfavorable scaling with system size.
Atomtronics is an emerging field which aims to manipulate ultracold atom moving in matter wave circuits for both fundamental studies in quantum science and technological applications. In this colloquium, we review recent progress in matter-wave circuitry and atomtronics-based quantum technology. After a short introduction to the basic physical principles and the key experimental techniques needed to realize atomtronic systems, we describe the physics of matter-wave in simple circuits such as ring traps and two-terminal systems. The main experimental observations and outstanding questions are discussed. Applications to a broad range of quantum technologies, from quantum sensing with atom interferometry to future quantum simulation and quantum computation architectures, are then presented.