No Arabic abstract
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian method are performed to study the interactions between propagating shocks and dispersed evaporating water droplets. Two-way coupling for exchanges of mass, momentum, energy and vapour species is adopted for the dilute two-phase gas-droplet flows. Interphase interactions and droplet breakup dynamics are investigated with initial droplet diameters of 30, 50, 70 and 90 {mu}m under an incident shock wave Mach number of 1.3. Novel two-phase flow phenomena are observed when droplet breakup occurs. First, droplets near the two-phase contact surface show obvious dispersed distribution because of the reflected pressure wave that propagates in the reverse direction of the leading shock. The reflected pressure wave grows stronger for larger droplets. Second, spatial oscillations of the gas phase pressure, droplet quantities (e.g., diameter and net force) and two-phase interactions (e.g., mass, momentum, and energy exchange), are observed in the post-shock region when droplet breakup occurs, which are caused by shock / droplet interactions. Third, the spatial distribution of droplets (i.e., number density, volume fraction) also shows strong oscillation in the post-shock region when droplet breakup occurs, which is caused by the oscillating force exerted on the droplets.
Building on the recent theoretical work of Wray, Duffy and Wilson [J. Fluid Mech. 884, A45 (2020)] concerning the competitive diffusion-limited evaporation of multiple thin sessile droplets in proximity to each other, we obtain theoretical predictions for the spatially non-uniform densities of the contact-line deposits (often referred to as coffee stains or ring stains) left on the substrate after such droplets containing suspended solid particles have completely evaporated. Neighbouring droplets interact via their vapour fields, which results in a spatially non-uniform shielding effect. We give predictions for the deposits from a pair of identical droplets, which show that the deposit is reduced the most where the droplets are closest together, and demonstrate excellent quantitative agreement with experimental results of Pradhan and Panigrahi [Coll. Surf. A 482, 562-567 (2015)]. We also give corresponding predictions for a triplet of identical droplets arranged in an equilateral triangle, which show that the effect of shielding on the deposit is more subtle in this case.
We investigate the effect of electrical charge on collisions of hydrodynamically interacting, micron-sized water droplets settling through quiescent air. The relative dynamics of charged droplets is determined by hydrodynamic interactions, particle and fluid inertia, and electrostatic forces. We analyse the resulting relative dynamics of oppositely charged droplets by determining its fixed points and their stable and unstable manifolds. The stable manifold of a saddle point forms a separatrix that separates colliding trajectories from those that do not collide. The qualitative conclusions from this theory are in excellent agreement with experiments.
Microfluidic techniques have been extensively developed to realize micro-total analysis systems in a small chip. For microanalysis, electro-magnetic forces have generally been utilized for the trapping of objects, but hydrodynamics has been little explored despite its relevance to pattern formation. Here, we report that water-in-oil (W/O) droplets can be transported in the grid of an array of other large W/O droplets. As each droplet approaches an interspace of the large droplet array, while exhibiting persistent back-and-forth motion, it is conveyed at a velocity equal to the droplet array. We confirm the appearance of closed streamlines in a numerical simulation, suggesting that a vortex-like stream is involved in trapping the droplet. Furthermore, more than one droplet is also conveyed as an ordered cluster with dynamic reposition.
The propagation and transformation of water waves over varying bathymetries is a subject of fundamental interest to ocean, coastal and harbor engineers. The specific bathymetry considered in this paper consists of one or two, naturally formed or man-made, trenches. The problem we focus on is the transformation of an incoming solitary wave by the trench(es), and the impact of the resulting wave system on a vertical wall located after the trench(es). The maximum run-up and the maximum force exerted on the wall are calculated for various lengths and heights of the trench(es), and are compared with the corresponding quantities in the absence of them. The calculations have been performed by using the fully nonlinear water-wave equations, in the form of the Hamiltonian coupled-mode theory, recently developed in Papoutsellis et al (Eur. J. Mech. B/Fluids, Vol. 72, 2018, pp. 199-224). Comparisons of the calculated free-surface elevation with existing experimental results indicate that the effect of the vortical flow, inevitably developed within and near the trench(es) but not captured by any potential theory, is not important concerning the frontal wave flow regime. This suggests that the predictions of the run-up and the force on the wall by nonlinear potential theory are expected to be nearly realistic. The main conclusion of our investigation is that the presence of two tandem trenches in front of the wall may reduce the run-up from (about) 20% to 45% and the force from 15% to 38%, depending on the trench dimensions and the wave amplitude. The percentage reduction is greater for higher waves. The presence of only one trench leads to reductions 1.4 - 1.7 times smaller.