No Arabic abstract
The propagation and transformation of water waves over varying bathymetries is a subject of fundamental interest to ocean, coastal and harbor engineers. The specific bathymetry considered in this paper consists of one or two, naturally formed or man-made, trenches. The problem we focus on is the transformation of an incoming solitary wave by the trench(es), and the impact of the resulting wave system on a vertical wall located after the trench(es). The maximum run-up and the maximum force exerted on the wall are calculated for various lengths and heights of the trench(es), and are compared with the corresponding quantities in the absence of them. The calculations have been performed by using the fully nonlinear water-wave equations, in the form of the Hamiltonian coupled-mode theory, recently developed in Papoutsellis et al (Eur. J. Mech. B/Fluids, Vol. 72, 2018, pp. 199-224). Comparisons of the calculated free-surface elevation with existing experimental results indicate that the effect of the vortical flow, inevitably developed within and near the trench(es) but not captured by any potential theory, is not important concerning the frontal wave flow regime. This suggests that the predictions of the run-up and the force on the wall by nonlinear potential theory are expected to be nearly realistic. The main conclusion of our investigation is that the presence of two tandem trenches in front of the wall may reduce the run-up from (about) 20% to 45% and the force from 15% to 38%, depending on the trench dimensions and the wave amplitude. The percentage reduction is greater for higher waves. The presence of only one trench leads to reductions 1.4 - 1.7 times smaller.
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a short clearance $c$ between the bubble interface and the wall. Motivated by the fact that numerically and experimentally measured migration velocities are considerably higher than the velocity estimated by the available analytical solution using the Fax{e}n mirror image technique for $a/(a+c)ll 1$ (here $a$ is the bubble radius), when the clearance parameter $varepsilon(= c/a)$ is comparable to or smaller than unity, the numerical analysis based on the boundary-fitted finite-difference approach solving the Stokes equation is performed to complement the experiment. The migration velocity is found to be more affected by the high-order deformation modes with decreasing $varepsilon$. The numerical simulations are compared with a theoretical migration velocity obtained from a lubrication study of a nearly spherical drop, which describes the role of the squeezing flow within the bubble-wall gap. The numerical and lubrication analyses consistently demonstrate that when $varepsilonleq 1$, the lubrication effect makes the migration velocity asymptotically $mu V_{B1}^2/(25varepsilon gamma)$ (here, $V_{B1}$, $mu$, and $gamma$ denote the rising velocity, the dynamic viscosity of liquid, and the surface tension, respectively).
Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a small clearance $c$ between the bubble interface and the wall. Motivated by the fact that experimentally measured migration velocity (Takemura et al. (2002, J. Fluid Mech. {bf 461}, 277)) is higher than the velocity estimated by the available analytical solution (Magnaudet et al. (2003, J. Fluid Mech. {bf 476}, 115)) using the Fax{e}n mirror image technique for $kappa(=a/(a+c))ll 1$ (here $a$ is the bubble radius), when the clearance parameter $epsilon(=c/a)$ is comparable to or smaller than unit, the numerical analysis based on the boundary-fitted finite-difference approach by solving the Stokes equation is performed to complement the experiment. To improve the understandings of a role of the squeezing flow within the bubble-wall gap, the theoretical analysis based on a soft-lubrication approach (Skotheim & Mahadevan (2004, Phys. Rev. Lett. {bf 92}, 245509)) is also performed. The present analyses demonstrate the migration velocity scales $propto{rm Ca} epsilon^{-1}V_{B1}$ (here, $V_{B1}$ and ${rm Ca}$ denote the rising velocity and the capillary number, respectively) in the limit of $epsilonto 0$.
The nonlinear interaction of ultrasonic waves with a nonspherical particle may give rise to the acoustic radiation torque on the particle. This phenomenon is investigated here considering a rigid prolate spheroidal particle of subwavelength dimensions that is much smaller than the wavelength. Using the partial wave expansion in spheroidal coordinates, the radiation torque of a traveling and standing plane wave with arbitrary orientation is exactly derived in the dipole approximation. We obtain asymptotic expressions of the torque as the particle geometry approaches a sphere and a straight line. As the particle is trapped in a pressure node of a standing plane wave, its radiation torque equals that of a traveling plane wave. We also find how the torque changes with the particle aspect ratio. Our findings are in excellent agreement with previous numerical computations. Also, by analyzing the torque potential energy, we determine the stable and unstable spatial configuration available for a particle.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
The seminal Batchelor-Greens (BG) theory on the hydrodynamic interaction of two spherical particles of radii a suspended in a viscous shear flow neglects the effect of the boundaries. In the present paper we study how a plane wall modifies this interaction. Using an integral equation for the surface traction we derive the expression for the particles relative velocity as a sum of the BGs velocity and the term due to the presence of a wall at finite distance, z_0. Our calculation is not the perturbation theory of the BG solution, so the contribution due to the wall is not necessarily small. The distance at which the wall significantly alters the particles interaction scales as z_0^{3/5}. The phase portrait of the particles relative motion is different from the BG theory, where there are two singly-connected regions of open and closed trajectories both of infinite volume. For finite z_0, there is a new domain of closed (dancing) and open (swapping) trajectories. The width of this region behaves as 1/z_0. Along the swapping trajectories, that have been previously observed numerically, the incoming particle is turning back after the encounter with the reference particle, rather than passing it by, as in the BG theory. The region of dancing trajectories has infinite volume. We found a one-parameter family of equilibrium states, overlooked previously, whereas the pair of spheres flows as a whole without changing its configuration. These states are marginally stable and their perturbation yields a two-parameter family of the dancing trajectories, where the particle is orbiting around a fixed point in a frame co-moving with the reference particle. We suggest that the phase portrait obtained at z_0>>a is topologically stable and can be extended down to rather small z_0 of several particle diameters. We confirm this by direct numerical simulations of the Navier-Stokes equations with z_0=5a.