No Arabic abstract
We report upon three years of follow-up and confirmation of doubly imaged quasar lenses through imaging campaigns from 2016-2018 with the Near-Infrared Camera2 (NIRC2) on the W. M. Keck Observatory. A sample of 57 quasar lens candidates are imaged in adaptive-optics-assisted or seeing-limited $K^prime$-band observations. Out of these 57 candidates, 15 are confirmed as lenses. We form a sample of 20 lenses adding in a number of previously-known lenses that were imaged with NIRC2 in 2013-14 as part of a pilot study. By modelling these 20 lenses, we obtain $K^prime$-band relative photometry and astrometry of the quasar images and the lens galaxy. We also provide the lens properties and predicted time delays to aid planning of follow-up observations necessary for various astrophysical applications, e.g., spectroscopic follow-up to obtain the deflector redshifts for the newly confirmed systems. We compare the departure of the observed flux ratios from the smooth-model predictions between doubly and quadruply imaged quasar systems. We find that the departure is consistent between these two types of lenses if the modelling uncertainty is comparable.
We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over seven years (2009 - 2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ~10% (~30%) of the observed stars have at least one companion detected within 1 (4). The true fraction of systems with close (< ~4) companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 R_Earth by ~2-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
Here we present new red sequence overdensity measurements for 77 fields in the high-$z$ Clusters Occupied by Bent Radio AGN (COBRA) survey, based on $r$- and $i$-band imaging taken with Lowell Observatorys Discovery Channel Telescope. We observe 38 COBRA fields in $r$-band and 90 COBRA fields in $i$-band. By combining the $r$- and $i$-band photometry with our 3.6$mu$m and 4.5$mu$m $Spitzer$ IRAC observations, we identify 39 red sequence cluster candidates that host a strong overdensity of galaxies when measuring the excess of red sequence galaxies relative to a background field. We initially treat the radio host as the cluster center and then determine a new cluster center based on the surface density of red sequence sources. Using our color selection, we identify which COBRA cluster candidates have strong red sequence populations. By removing foreground and background contaminants, we more securely determine which fields include cluster candidates with a higher significance than our single-band observations. Additionally, of the 77 fields we analyze with a redshift estimate, 26 include newly estimated photometric redshifts.
We explore the scientific potential of next-generation high-angular resolution optical imager to study the AGN/Host connection. The availability of a significant number of X-raying AGN with natural guide stars, allowing for adaptive optics at optical wavelengths, offers an interesting perspective to complement high-resolution work currently done in the near-infrared.
Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars observed by the Hubble Space Telescope (HST). Strong correlations between the parameters defining the image configuration are revealed. The relation between the image configuration and the source position is studied. Some simple features of the selected data sample are exposed and commented upon. In particular, evidence is found for the selected sample to be biased in favour of large magnification systems. While having no direct impact on practical analyses of specific systems, the results have pedagogical value and deepen our understanding of the mechanism of gravitational lensing.