Do you want to publish a course? Click here

Base Station and Passive Reflectors Placement for Urban mmWave Networks

146   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The use of millimeter-wave (mmWave) bands in 5G networks introduce a new set of challenges to network planning. Vulnerability to blockages and high path loss at mmWave frequencies require careful planning of the network to achieve the desired service quality. In this paper, we propose a novel 3D geometry-based framework for deploying mmWave base stations (gNBs) in urban environments by considering first-order reflection effects. We also provide a solution for the optimum deployment of passive metallic reflectors (PMRs) to extend radio coverage to non-line-of-sight (NLoS) areas. In particular, we perform visibility analysis to find the direct and indirect visibility regions, and using these, we derive a geometry-and-blockage-aided path loss model. We then formulate the network planning problem as two independent optimization problems, placement of gNB(s) and PMRs, to maximize the coverage area with a certain quality-of-service constraint and minimum cost. We test the efficacy of our proposed approach using a generic map and compare our simulation results with the ray-tracing solution. Our simulation results show that considering the first-order reflections in planning the mmWave network helps reduce the number of PMRs required to cover the NLoS area and the gNB placement aided with PMRs requires fewer gNBs to cover the same area, which in turn reduces the deployment cost.



rate research

Read More

Base station (BS) placement in mobile networks is critical to the efficient use of resources in any communication system and one of the main factors that determines the quality of communication. Although there is ample literature on the optimum placement of BSs for sub-6 GHz bands, channel propagation characteristics, such as penetration loss, are notably different in millimeter-wave (mmWave) bands than in sub-6 GHz bands. Therefore, designated solutions are needed for mmWave systems to have reliable quality of service (QoS) assessment. This article proposes a multi-armed bandit (MAB) learning approach for the mmWave BS placement problem. The proposed solution performs viewshed analysis to identify the areas that are visible to a given BS location by considering the 3D geometry of the outdoor environments. Coverage probability, which is used as the QoS metric, is calculated using the appropriate path loss model depending on the viewshed analysis and a probabilistic blockage model and then fed to the MAB learning mechanism. The optimum BS location is then determined based on the expected reward that the candidate locations attain at the end of the training process. Unlike the optimization-based techniques, this method can capture the time-varying behavior of the channel and find the optimal BS locations that maximize long-term performance.
Autonomous unmanned aerial vehicles (UAVs) with on-board base station equipment can potentially provide connectivity in areas where the terrestrial infrastructure is overloaded, damaged, or absent. Use cases comprise emergency response, wildfire suppression, surveillance, and cellular communications in crowded events to name a few. A central problem to enable this technology is to place such aerial base stations (AirBSs) in locations that approximately optimize the relevant communication metrics. To alleviate the limitations of existing algorithms, which require intensive and reliable communications among AirBSs or between the AirBSs and a central controller, this paper leverages stochastic optimization and machine learning techniques to put forth an adaptive and decentralized algorithm for AirBS placement without inter-AirBS cooperation or communication. The approach relies on a smart design of the network utility function and on a stochastic gradient ascent iteration that can be evaluated with information available in practical scenarios. To complement the theoretical convergence properties, a simulation study corroborates the effectiveness of the proposed scheme.
Multiple-input multiple-output (MIMO) techniques can help in scaling the achievable air-to-ground (A2G) channel capacity while communicating with drones. However, spatial multiplexing with drones suffers from rank deficient channels due to the unobstructed line-of-sight (LoS), especially in millimeter-wave (mmWave) frequencies that use narrow beams. One possible solution is utilizing low-cost and low-complexity metamaterial-based intelligent reflecting surfaces (IRS) to enrich the multipath environment, taking into account that the drones are restricted to fly only within well-defined drone corridors. A hurdle with this solution is placing the IRSs optimally. In this study, we propose an approach for IRS placement with a goal to improve the spatial multiplexing gains, and hence to maximize the average channel capacity in a predefined drone corridor. Our results at 6 GHz, 28 GHz and 60 GHz show that the proposed approach increases the average rates for all frequency bands for a given drone corridor, when compared with the environment where there are no IRSs present, and IRS-aided channels perform close to each other at sub-6 and mmWave bands.
Mobile base stations on board unmanned aerial vehicles (UAVs) promise to deliver connectivity to those areas where the terrestrial infrastructure is overloaded, damaged, or absent. A fundamental problem in this context involves determining a minimal set of locations in 3D space where such aerial base stations (ABSs) must be deployed to provide coverage to a set of users. While nearly all existing approaches rely on average characterizations of the propagation medium, this work develops a scheme where the actual channel information is exploited by means of a radio tomographic map. A convex optimization approach is presented to minimize the number of required ABSs while ensuring that the UAVs do not enter no-fly regions. A simulation study reveals that the proposed algorithm markedly outperforms its competitors.
The use of millimeter wave (mmWave) spectrum for commercial wireless communications is expected to offer data rates in the order of Gigabits-per-second, thus able to support future applications such as Vehicle-to-Vehicle or Vehicle-to-Infrastructure communication. However, especially in urban settings, mmWave signal propagation is sensitive to blockage by surrounding objects, resulting in significant signal attenuation. One approach to mitigate the effect of attenuation is through multi-hop communication with the help of relays. Leveraging the unique characteristics of the mmWave medium, we consider a single-source/destination $2$-hop system, where a cluster of spatially distributed and reconfigurable relays is used to cooperatively amplify-and-forward the source signal to the destination. Our system evolves in time slots, during which not only are optimal beamforming weights centrally determined, but also future relay positions for the subsequent time slot are optimally selected, jointly maximizing the expected signal-to-interference+noise ratio at the destination. Optimal predictive relay positioning is achieved by formulating a 2-stage stochastic programming problem, which is efficiently approximated via a conditional sample-average-approximation surrogate, and solved in a purely distributed fashion across relays. The efficacy of the proposed near-optimal positioning policy is corroborated by comparison against a randomized relay positioning policy, clearly confirming its superiority.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا