Do you want to publish a course? Click here

Dark matter admixed neutron star properties in the light of gravitational wave observations: a two fluid approach

124   0   0.0 ( 0 )
 Added by Arpan Das
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effect of density dependent dark matter on the neutron star mass, radius, and tidal deformability. Nuclear matter (normal matter) as well as the fermionic dark matter sector is considered in a mean field model. We adopt the two fluid formalism to investigate the effect of dark matter on the neutron star properties. In the two fluid picture, there is no direct interaction between the dark matter and the nuclear matter. Rather these two sectors interact only through gravitational interaction. The nuclear matter sector is described by the $sigma-omega-rho$ meson interaction in the FSU2R parameterization. In the dark matter sector, we use the Bayesian parameter optimization technique to fix the unknown parameters in the dark matter equation of state. In the two fluid picture, we solve the coupled Tolman-Oppenheimer-Volkoff (TOV) equations to obtain the mass and radius of dark matter admixed neutron stars (DANSs). We also estimate the effect of the density dependent dark matter sector on the tidal deformability of dark matter admixed neutron stars (DANSs).



rate research

Read More

In this review we highlight a few physical properties of neutron stars and their theoretical treatment inasmuch as they can be useful for nuclear and particle physicists concerned with matter at finite density (and newly, temperature). Conversely, we lay out some of the hadron physics necessary to test General Relativity with binary mergers including at least one neutron star, in view of the event GW170817: neutron stars and their mergers reach the highest matter densities known, offering access to the matter side of Einsteins equations. In addition to minimum introductory material for those interested in starting research in the field of neutron stars, we dedicate quite some effort to a discussion of the Equation of State of hadron matter in view of gravitational wave developments; we address phase transitions and how the new data may help; we show why transport is expected to be dominated by turbulence instead of diffusion through most if not all of the star, in view of the transport coefficients that have been calculated from microscopic hadron physics; and we relate many of the interesting physics topics in neutron stars to the radius and tidal deformability.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.
Motivated by the recent gravitational wave detection by the LIGO-VIRGO observatories, we study the Love number and dimensionless tidal polarizability of highly magnetized stars. We also investigate the fundamental quasi-normal mode of neutron stars subject to high magnetic fields. To perform our calculations we use the chaotic field approximation and consider both nucleonic and hyperonic stars. As far as the fundamental mode is concerned, we conclude that the role played by the constitution of the stars is far more relevant than the intensity of the magnetic field and if massive stars are considered, the ones constituted by nucleons only present frequencies somewhat lower than the ones with hyperonic cores, a feature that can be used to point out the real internal structure of neutron stars. Moreover, our studies clearly indicate that strong magnetic fields play a crucial role in the deformability of low mass neutron stars, with possible consequences on the interpretation of the detected gravitational waves signatures.
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
197 - D. Blaschke 2011
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the nuclear medium cooling scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا