Do you want to publish a course? Click here

Machine Learning assisted Chimera and Solitary states in Networks

321   0   0.0 ( 0 )
 Added by Niraj Kushwaha
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Chimera and Solitary states have captivated scientists and engineers due to their peculiar dynamical states corresponding to the co-existence of coherent and incoherent dynamical evolution in coupled units in various natural and artificial systems. It has been further demonstrated that such states can be engineered in systems of coupled oscillators by the suitable implementation of communication delays. Here, using supervised machine learning, we predict (a) the precise value of delay which is sufficient for engineering chimera and solitary states for a given set of system parameters, as well as (b) the intensity of incoherence for such engineered states. The results are demonstrated for two different examples consisting of single layer and multi layer networks. First, the chimera states (solitary states) are engineered by establishing delays in the neighboring links of a node (the interlayer links) in a 2-D lattice (multiplex network) of oscillators. Then, different machine learning classifiers, KNN, SVM and MLP-Neural Network are employed by feeding the data obtained from the network models. Once a machine learning model is trained using a limited amount of data, it makes predictions for a given unknown systems parameter values. Testing accuracy, sensitivity, and specificity analysis reveal that MLP-NN classifier is better suited than Knn or SVM classifier for the predictions of parameters values for engineered chimera and solitary states. The technique provides an easy methodology to predict critical delay values as well as the intensity of incoherence for designing an experimental setup to create solitary and chimera states.



rate research

Read More

Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.
We find chimera states with respect to amplitude dynamics in a network of Stuart-Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions.
We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states, in which coherent in-phase and anti-phase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the formation of chimera states. We show that the introduction of a refractory period enlarges the parameter region where chimera states appear and affects the chimera multiplicity.
146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا