No Arabic abstract
We recast the well known Israel-Darmois matching conditions for Locally Rotationally Symmetric (LRS-II) spacetimes using the semitetrad 1+1+2 covariant formalism. This demonstrates how the geometrical quantities including the volume expansion, spacetime shear, acceleration and Weyl curvature of two different spacetimes are related at a general matching surface inheriting the symmetry, which can be timelike or spacelike. The approach is purely geometrical and depends on matching the Gaussian curvature of 2-dimensional sheets at the matching hypersurface. This also provides the constraints on the thermodynamic quantities on each spacetime so that they can be matched smoothly across the surface. As an example we regain the Santos boundary conditions and model of a radiating star matched to a Vaidya exterior in general relativity.
In this paper we investigate conformal symmetries in Locally Rotationally Symmetric (LRS) spacetimes using a semitetrad covariant formalism. We demonstrate that a general LRS spacetime which rotates and spatially twists simultaneously has an inherent homothetic symmetry in the plane spanned by the fluid flow lines and the preferred spatial direction. We discuss the nature and consequence of this homothetic symmetry showing that a null Killing horizon arises when the heat flux has an extremal value. We also consider the special case of a perfect fluid and the restriction on the conformal geometry.
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
Using the quasi-Maxwell formalism, we derive the necessary and sufficient conditions for the matching of two stationary spacetimes along a stationary timelike hypersurface, expressed in terms of the gravitational and gravitomagnetic fields and the 2-dimensional matching surface on the space manifold. We prove existence and uniqueness results to the matching problem for stationary perfect fluid spacetimes with spherical, planar, hyperbolic and cylindrical symmetry. Finally, we find an explicit interior for the cylindrical analogue of the NUT spacetime.
We search for self tuning solutions to the Einstein-scalar field equations for the simplest class of `Fab-Four models with constant potentials. We first review the conditions under which self tuning occurs in a cosmological spacetime, and by introducing a small modification to the original theory - introducing the second and third Galileon terms - show how one can obtain de Sitter states where the expansion rate is independent of the vacuum energy. We then consider whether the same self tuning mechanism can persist in a spherically symmetric inhomogeneous spacetime. We show that there are no asymptotically flat solutions to the field equations in which the vacuum energy is screened, other than the trivial one (Minkowski space). We then consider the possibility of constructing Schwarzschild de Sitter spacetimes for the modified Fab Four plus Galileon theory. We argue that the only model that can successfully screen the vacuum energy in both an FLRW and Schwarzschild de Sitter spacetime is one containing `John $sim G^{mu}{}_{ u} partial_{mu}phipartial^{ u}phi$ and a canonical kinetic term $sim partial_{alpha}phi partial^{alpha}phi$. This behaviour was first observed in (Babichev&Charmousis,2013). The screening mechanism, which requires redundancy of the scalar field equation in the `vacuum, fails for the `Paul term in an inhomogeneous spacetime.
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for Locally Rotationally Symmetric (LRS) Bianchi III metric and open Friedmann-Lema^itre-Robertson-Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag