No Arabic abstract
We introduce the Free Universal Sound Separation (FUSS) dataset, a new corpus for experiments in separating mixtures of an unknown number of sounds from an open domain of sound types. The dataset consists of 23 hours of single-source audio data drawn from 357 classes, which are used to create mixtures of one to four sources. To simulate reverberation, an acoustic room simulator is used to generate impulse responses of box shaped rooms with frequency-dependent reflective walls. Additional open-source data augmentation tools are also provided to produce new mixtures with different combinations of sources and room simulations. Finally, we introduce an open-source baseline separation model, based on an improved time-domain convolutional network (TDCN++), that can separate a variable number of sources in a mixture. This model achieves 9.8 dB of scale-invariant signal-to-noise ratio improvement (SI-SNRi) on mixtures with two to four sources, while reconstructing single-source inputs with 35.5 dB absolute SI-SNR. We hope this dataset will lower the barrier to new research and allow for fast iteration and application of novel techniques from other machine learning domains to the sound separation challenge.
Performing sound event detection on real-world recordings often implies dealing with overlapping target sound events and non-target sounds, also referred to as interference or noise. Until now these problems were mainly tackled at the classifier level. We propose to use sound separation as a pre-processing for sound event detection. In this paper we start from a sound separation model trained on the Free Universal Sound Separation dataset and the DCASE 2020 task 4 sound event detection baseline. We explore different methods to combine separated sound sources and the original mixture within the sound event detection. Furthermore, we investigate the impact of adapting the sound separation model to the sound event detection data on both the sound separation and the sound event detection.
In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-supervised learning approach named guided learning. This year, we incorporate multi-branch learning (MBL) into the original system to further improve its performance. MBL uses different branches with different pooling strategies (including instance-level and embedding-level strategies) and different pooling modules (including attention pooling, global max pooling or global average pooling modules), which share the same feature encoder of the model. Therefore, multiple branches pursuing different purposes and focusing on different characteristics of the data can help the feature encoder model the feature space better and avoid over-fitting. To better exploit the strongly-labeled synthetic data, inspired by multi-task learning, we also employ a sound event detection branch. To combine sound separation (SS) with sound event detection (SED), we fuse the results of SED systems with SS-SED systems which are trained using separated sound output by an SS system. The experimental results prove that MBL can improve the model performance and using SS has great potential to improve the performance of SED ensemble system.
Content and style representations have been widely studied in the field of style transfer. In this paper, we propose a new loss function using speaker content representation for audio source separation, and we call it speaker representation loss. The objective is to extract the target speaker voice from the noisy input and also remove it from the residual components. Compared to the conventional spectral reconstruction, our proposed framework maximizes the use of target speaker information by minimizing the distance between the speaker representations of reference and source separation output. We also propose triplet speaker representation loss as an additional criterion to remove the target speaker information from residual spectrogram output. VoiceFilter framework is adopted to evaluate source separation performance using the VCTK database, and we achieved improved performances compared to the baseline loss function without any additional network parameters.
Discriminative models for source separation have recently been shown to produce impressive results. However, when operating on sources outside of the training set, these models can not perform as well and are cumbersome to update. Classical methods like Non-negative Matrix Factorization (NMF) provide modular approaches to source separation that can be easily updated to adapt to new mixture scenarios. In this paper, we generalize NMF to develop end-to-end non-negative auto-encoders and demonstrate how they can be used for source separation. Our experiments indicate that these models deliver comparable separation performance to discriminative approaches, while retaining the modularity of NMF and the modeling flexibility of neural networks.
Recent progress in audio source separation lead by deep learning has enabled many neural network models to provide robust solutions to this fundamental estimation problem. In this study, we provide a family of efficient neural network architectures for general purpose audio source separation while focusing on multiple computational aspects that hinder the application of neural networks in real-world scenarios. The backbone structure of this convolutional network is the SUccessive DOwnsampling and Resampling of Multi-Resolution Features (SuDoRM-RF) as well as their aggregation which is performed through simple one-dimensional convolutions. This mechanism enables our models to obtain high fidelity signal separation in a wide variety of settings where variable number of sources are present and with limited computational resources (e.g. floating point operations, memory footprint, number of parameters and latency). Our experiments show that SuDoRM-RF models perform comparably and even surpass several state-of-the-art benchmarks with significantly higher computational resource requirements. The causal variation of SuDoRM-RF is able to obtain competitive performance in real-time speech separation of around 10dB scale-invariant signal-to-distortion ratio improvement (SI-SDRi) while remaining up to 20 times faster than real-time on a laptop device.