Do you want to publish a course? Click here

Approximate Solutions to a Class of Reachability Games

185   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we present a method for finding approximate Nash equilibria in a broad class of reachability games. These games are often used to formulate both collision avoidance and goal satisfaction. Our method is computationally efficient, running in real-time for scenarios involving multiple players and more than ten state dimensions. The proposed approach forms a family of increasingly exact approximations to the original game. Our results characterize the quality of these approximations and show operation in a receding horizon, minimally-invasive control context. Additionally, as a special case, our method reduces to local gradient-based optimization in the single-player (optimal control) setting, for which a wide variety of efficient algorithms exist.



rate research

Read More

We study the class of reach-avoid dynamic games in which multiple agents interact noncooperatively, and each wishes to satisfy a distinct target condition while avoiding a failure condition. Reach-avoid games are commonly used to express safety-critical optimal control problems found in mobile robot motion planning. While a wide variety of approaches exist for these motion planning problems, we focus on finding time-consistent solutions, in which planned future motion is still optimal despite prior suboptimal actions. Though abstract, time consistency encapsulates an extremely desirable property: namely, time-consistent motion plans remain optimal even when a robots motion diverges from the plan early on due to, e.g., intrinsic dynamic uncertainty or extrinsic environment disturbances. Our main contribution is a computationally-efficient algorithm for multi-agent reach-avoid games which renders time-consistent solutions. We demonstrate our approach in a simulated driving scenario, where we construct a two-player adversarial game to model a range of defensive driving behaviors.
Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is $PSPACE$-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently.
Recently, invariant risk minimization (IRM) (Arjovsky et al.) was proposed as a promising solution to address out-of-distribution (OOD) generalization. In Ahuja et al., it was shown that solving for the Nash equilibria of a new class of ensemble-games is equivalent to solving IRM. In this work, we extend the framework in Ahuja et al. for linear regressions by projecting the ensemble-game on an $ell_{infty}$ ball. We show that such projections help achieve non-trivial OOD guarantees despite not achieving perfect invariance. For linear models with confounders, we prove that Nash equilibria of these games are closer to the ideal OOD solutions than the standard empirical risk minimization (ERM) and we also provide learning algorithms that provably converge to these Nash Equilibria. Empirical comparisons of the proposed approach with the state-of-the-art show consistent gains in achieving OOD solutions in several settings involving anti-causal variables and confounders.
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when following this optimization, the exploitability of a players strategy converges asymptotically to zero, and hence when both players employ this optimization, the joint policies converge to a Nash equilibrium. Unlike fictitious play (XFP) and counterfactual regret minimization (CFR), our convergence result pertains to the policies being optimized rather than the average policies. Our experiments demonstrate convergence rates comparable to XFP and CFR in four benchmark games in the tabular case. Using function approximation, we find that our algorithm outperforms the tabular version in two of the games, which, to the best of our knowledge, is the first such result in imperfect information games among this class of algorithms.
In this paper, we study large population multi-agent reinforcement learning (RL) in the context of discrete-time linear-quadratic mean-field games (LQ-MFGs). Our setting differs from most existing work on RL for MFGs, in that we consider a non-stationary MFG over an infinite horizon. We propose an actor-critic algorithm to iteratively compute the mean-field equilibrium (MFE) of the LQ-MFG. There are two primary challenges: i) the non-stationarity of the MFG induces a linear-quadratic tracking problem, which requires solving a backwards-in-time (non-causal) equation that cannot be solved by standard (causal) RL algorithms; ii) Many RL algorithms assume that the states are sampled from the stationary distribution of a Markov chain (MC), that is, the chain is already mixed, an assumption that is not satisfied for real data sources. We first identify that the mean-field trajectory follows linear dynamics, allowing the problem to be reformulated as a linear quadratic Gaussian problem. Under this reformulation, we propose an actor-critic algorithm that allows samples to be drawn from an unmixed MC. Finite-sample convergence guarantees for the algorithm are then provided. To characterize the performance of our algorithm in multi-agent RL, we have developed an error bound with respect to the Nash equilibrium of the finite-population game.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا