Do you want to publish a course? Click here

The surprizing complexity of generalized reachability games

132   0   0.0 ( 0 )
 Added by Nathanael Fijalkow
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is $PSPACE$-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently.



rate research

Read More

The use of monotonicity and Tarskis theorem in existence proofs of equilibria is very widespread in economics, while Tarskis theorem is also often used for similar purposes in the context of verification. However, there has been relatively little in the way of analysis of the complexity of finding the fixed points and equilibria guaranteed by this result. We study a computational formalism based on monotone functions on the $d$-dimensional grid with sides of length $N$, and their fixed points, as well as the closely connected subject of supermodular games and their equilibria. It is known that finding some (any) fixed point of a monotone function can be done in time $log^d N$, and we show it requires at least $log^2 N$ function evaluations already on the 2-dimensional grid, even for randomized algorithms. We show that the general Tarski problem of finding some fixed point, when the monotone function is given succinctly (by a boolean circuit), is in the class PLS of problems solvable by local search and, rather surprisingly, also in the class PPAD. Finding the greatest or least fixed point guaranteed by Tarskis theorem, however, requires $dcdot N$ steps, and is NP-hard in the white box model. For supermodular games, we show that finding an equilibrium in such games is essentially computationally equivalent to the Tarski problem, and finding the maximum or minimum equilibrium is similarly harder. Interestingly, two-player supermodular games where the strategy space of one player is one-dimensional can be solved in $O(log N)$ steps. We also observe that computing (approximating) the value of Condons (Shapleys) stochastic games reduces to the Tarski problem. An important open problem highlighted by this work is proving a $Omega(log^d N)$ lower bound for small fixed dimension $d geq 3$.
We consider the complexity properties of modern puzzle games, Hexiom, Cut the Rope and Back to Bed. The complexity of games plays an important role in the type of experience they provide to players. Back to Bed is shown to be PSPACE-Hard and the first two are shown to be NP-Hard. These results give further insight into the structure of these games and the resulting constructions may be useful in further complexity studies.
In this paper, we present a method for finding approximate Nash equilibria in a broad class of reachability games. These games are often used to formulate both collision avoidance and goal satisfaction. Our method is computationally efficient, running in real-time for scenarios involving multiple players and more than ten state dimensions. The proposed approach forms a family of increasingly exact approximations to the original game. Our results characterize the quality of these approximations and show operation in a receding horizon, minimally-invasive control context. Additionally, as a special case, our method reduces to local gradient-based optimization in the single-player (optimal control) setting, for which a wide variety of efficient algorithms exist.
Computers are known to solve a wide spectrum of problems, however not all problems are computationally solvable. Further, the solvable problems themselves vary on the amount of computational resources they require for being solved. The rigorous analysis of problems and assigning them to complexity classes what makes up the immense field of complexity theory. Do protein folding and sudoku have something in common? It might not seem so but complexity theory tells us that if we had an algorithm that could solve sudoku efficiently then we could adapt it to predict for protein folding. This same property is held by classic platformer games such as Super Mario Bros, which was proven to be NP-complete by Erik Demaine et. al. This article attempts to review the analysis of classical platformer games. Here, we explore the field of complexity theory through a broad survey of literature and then use it to prove that that solving a generalized level in the game Celeste is NP-complete. Later, we also show how a small change in it makes the game presumably harder to compute. Various abstractions and formalisms related to modelling of games in general (namely game theory and constraint logic) and 2D platformer video games, including the generalized meta-theorems originally formulated by Giovanni Viglietta are also presented.
Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischers result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا