Do you want to publish a course? Click here

Learning Structured Representations of Entity Names using Active Learning and Weak Supervision

58   0   0.0 ( 0 )
 Added by Kun Qian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.



rate research

Read More

Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.
Language modeling tasks, in which words, or word-pieces, are predicted on the basis of a local context, have been very effective for learning word embeddings and context dependent representations of phrases. Motivated by the observation that efforts to code world knowledge into machine readable knowledge bases or human readable encyclopedias tend to be entity-centric, we investigate the use of a fill-in-the-blank task to learn context independent representations of entities from the text contexts in which those entities were mentioned. We show that large scale training of neural models allows us to learn high quality entity representations, and we demonstrate successful results on four domains: (1) existing entity-level typing benchmarks, including a 64% error reduction over previous work on TypeNet (Murty et al., 2018); (2) a novel few-shot category reconstruction task; (3) existing entity linking benchmarks, where we match the state-of-the-art on CoNLL-Aida without linking-specific features and obtain a score of 89.8% on TAC-KBP 2010 without using any alias table, external knowledge base or in domain training data and (4) answering trivia questions, which uniquely identify entities. Our global entity representations encode fine-grained type categories, such as Scottish footballers, and can answer trivia questions such as: Who was the last inmate of Spandau jail in Berlin?
We created this CORD-NER dataset with comprehensive named entity recognition (NER) on the COVID-19 Open Research Dataset Challenge (CORD-19) corpus (2020-03-13). This CORD-NER dataset covers 75 fine-grained entity types: In addition to the common biomedical entity types (e.g., genes, chemicals and diseases), it covers many new entity types related explicitly to the COVID-19 studies (e.g., coronaviruses, viral proteins, evolution, materials, substrates and immune responses), which may benefit research on COVID-19 related virus, spreading mechanisms, and potential vaccines. CORD-NER annotation is a combination of four sources with different NER methods. The quality of CORD-NER annotation surpasses SciSpacy (over 10% higher on the F1 score based on a sample set of documents), a fully supervised BioNER tool. Moreover, CORD-NER supports incrementally adding new documents as well as adding new entity types when needed by adding dozens of seeds as the input examples. We will constantly update CORD-NER based on the incremental updates of the CORD-19 corpus and the improvement of our system.
In a large-scale knowledge graph (KG), an entity is often described by a large number of triple-structured facts. Many applications require abridge
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25% of the original training data.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا