Do you want to publish a course? Click here

Flimma: a federated and privacy-preserving tool for differential gene expression analysis

78   0   0.0 ( 0 )
 Added by Olga Zolotareva
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, if class labels are inhomogeneously distributed between cohorts, their accuracy may drop. Flimma (https://exbio.wzw.tum.de/flimma/) addresses this issue by implementing the state-of-the-art workflow limma voom in a privacy-preserving manner, i.e. patient data never leaves its source site. Flimma results are identical to those generated by limma voom on combined datasets even in imbalanced scenarios where meta-analysis approaches fail.



rate research

Read More

Data from discovery proteomic and phosphoproteomic experiments typically include missing values that correspond to proteins that have not been identified in the analyzed sample. Replacing the missing values with random numbers, a process known as imputation, avoids apparent infinite fold-change values. However, the procedure comes at a cost: Imputing a large number of missing values has the potential to significantly impact the results of the subsequent differential expression analysis. We propose a method that identifies differentially expressed proteins by ranking their observed changes with respect to the changes observed for other proteins. Missing values are taken into account by this method directly, without the need to impute them. We illustrate the performance of the new method on two distinct datasets and show that it is robust to missing values and, at the same time, provides results that are otherwise similar to those obtained with edgeR which is a state-of-art differential expression analysis method. The new method for the differential expression analysis of proteomic data is available as an easy to use Python package.
Complex biological functions are carried out by the interaction of genes and proteins. Uncovering the gene regulation network behind a function is one of the central themes in biology. Typically, it involves extensive experiments of genetics, biochemistry and molecular biology. In this paper, we show that much of the inference task can be accomplished by a deep neural network (DNN), a form of machine learning or artificial intelligence. Specifically, the DNN learns from the dynamics of the gene expression. The learnt DNN behaves like an accurate simulator of the system, on which one can perform in-silico experiments to reveal the underlying gene network. We demonstrate the method with two examples: biochemical adaptation and the gap-gene patterning in fruit fly embryogenesis. In the first example, the DNN can successfully find the two basic network motifs for adaptation - the negative feedback and the incoherent feed-forward. In the second and much more complex example, the DNN can accurately predict behaviors of essentially all the mutants. Furthermore, the regulation network it uncovers is strikingly similar to the one inferred from experiments. In doing so, we develop methods for deciphering the gene regulation network hidden in the DNN black box. Our interpretable DNN approach should have broad applications in genotype-phenotype mapping.
Motivation: Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. Results: We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracey-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Availability: http://cran.r-project.org/web/packages/PCGSE/index.html Contact: [email protected] or [email protected]
RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression.
141 - Anne-Claire Haury 2010
Motivation : Molecular signatures for diagnosis or prognosis estimated from large-scale gene expression data often lack robustness and stability, rendering their biological interpretation challenging. Increasing the signatures interpretability and stability across perturbations of a given dataset and, if possible, across datasets, is urgently needed to ease the discovery of important biological processes and, eventually, new drug targets. Results : We propose a new method to construct signatures with increased stability and easier interpretability. The method uses a gene network as side interpretation and enforces a large connectivity among the genes in the signature, leading to signatures typically made of genes clustered in a few subnetworks. It combines the recently proposed graph Lasso procedure with a stability selection procedure. We evaluate its relevance for the estimation of a prognostic signature in breast cancer, and highlight in particular the increase in interpretability and stability of the signature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا