Do you want to publish a course? Click here

Generation and acceleration of high brightness electrons beams bunched at X-ray wavelengths using plasma-based acceleration

62   0   0.0 ( 0 )
 Added by Xinlu Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show using particle-in-cell (PIC) simulations and theoretical analysis that a high-quality electron beam whose density is modulated at angstrom scales can be generated directly using density downramp injection in a periodically modulated density in nonlinear plasma wave wakefields. The density modulation turns on and off the injection of electrons at the period of the modulation. Due to the unique longitudinal mapping between the electrons initial positions and their final trapped positions inside the wake, this results in an electron beam with density modulation at a wavelength orders of magnitude shorter than the plasma density modulation. The ponderomotive force of two counter propagating lasers of the same frequency can generate a density modulation at half the laser wavelength. Assuming a laser wavelength of $0.8micrometer$, fully self-consistent OSIRIS PIC simulations show that this scheme can generate high quality beams modulated at wavelengths between 10s and 100 angstroms. Such beams could produce fully coherent, stable, hundreds of GW X-rays by going through a resonant undulator.



rate research

Read More

79 - Y. P. Wu , J. F. Hua , C. H. Pai 2018
Plasma-based electron and positron wakefield acceleration has made great strides in the past decade. However one major challenge for its applications to coherent light sources and colliders is the relatively large energy spread of the accelerated beams, currently at a few percent level. This energy spread is usually correlated with particle position in the beam arising from the longitudinal chirp of the wakefield amplitude. Therefore a dechirper is highly desirable for reducing this spread down to $sim0.1%$ level, while at the same time for maintaining the emittance of the accelerated beam. Here we propose that a low-density hollow channel plasma can act as a near-ideal dechirper for both electrons and positrons. We demonstrate the concept through large-scale three-dimensional particle-in-cell simulations. We show that the initial positive correlated energy spread (chirp) on the beam exiting a plasma accelerator can be compensated by the nearly linear self-wake induced by the beam in the hollow channel from few percent level down to $leq 0.1%$. Meanwhile, the beam emittance can be preserved due to the negligible transverse field inside the channel. This passive method may significantly improve the beam quality of plasma-based accelerators, paving the way for their applications to future compact free electron lasers and colliders.
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the worlds first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.
144 - F. Li 2013
The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.
100 - F. Li , C. J. Zhang , Y. Wan 2015
An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beams energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rms) down to 1.4% with its peak energy 190 MeV and charge 1.7 pC. The changing trend of beam energy spread indicates that longer acceleration may further lower the energy spread down to less than 1%, which may have potential in applications related to future coherent light source driven by laser-plasma accelerators.
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity. The physical basis for this effect is discussed, as are deviations from linear behavior observed in simulations with finite length beams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا