Do you want to publish a course? Click here

COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing

94   0   0.0 ( 0 )
 Added by Martin Weiss
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution. In order to make informed public health choices, there is a need for tools which allow evaluation and comparison of DCT methods. We introduce an agent-based compartmental simulator we call COVI-AgentSim, integrating detailed consideration of virology, disease progression, social contact networks, and mobility patterns, based on parameters derived from empirical research. We verify by comparing to real data that COVI-AgentSim is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity analysis to verify that the relative performance of contact tracing methods are consistent across a range of settings. We use COVI-AgentSim to perform cost-benefit analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features. We find all DCT methods consistently reduce the spread of the disease, and that the advantage of FCT over BCT is maintained over a wide range of adoption rates. Feature-based methods of contact tracing avert more disability-adjusted life years (DALYs) per socioeconomic cost (measured by productive hours lost). Our results suggest any DCT method can help save lives, support re-opening of economies, and prevent second-wave outbreaks, and that FCT methods are a promising direction for enriching BCT using self-reported symptoms, yielding earlier warning signals and a significantly reduced spread of the virus per socioeconomic cost.



rate research

Read More

Digital contact tracing is being used by many countries to help contain COVID-19s spread in a post-lockdown world. Among the various available techniques, decentralized contact tracing that uses Bluetooth received signal strength indication (RSSI) to detect proximity is considered less of a privacy risk than approaches that rely on collecting absolute locations via GPS, cellular-tower history, or QR-code scanning. As of October 2020, there have been millions of downloads of such Bluetooth-based contract-tracing apps, as more and more countries officially adopt them. However, the effectiveness of these apps in the real world remains unclear due to a lack of empirical research that includes realistic crowd sizes and densities. This study aims to fill that gap, by empirically investigating the effectiveness of Bluetooth-based contact tracing in crowd environments with a total of 80 participants, emulating classrooms, moving lines, and other types of real-world gatherings. The results confirm that Bluetooth RSSI is unreliable for detecting proximity, and that this inaccuracy worsens in environments that are especially crowded. In other words, this technique may be least useful when it is most in need, and that it is fragile when confronted by low-cost jamming. Moreover, technical problems such as high energy consumption and phone overheating caused by the contact-tracing app were found to negatively influence users willingness to adopt it. On the bright side, however, Bluetooth RSSI may still be useful for detecting coarse-grained contact events, for example, proximity of up to 20m lasting for an hour. Based on our findings, we recommend that existing contact-tracing apps can be re-purposed to focus on coarse-grained proximity detection, and that future ones calibrate distance estimates and adjust broadcast frequencies based on auxiliary information.
Since the onset of the COVID-19s global spread we have been following the debate around contact tracing apps -- the tech-enabled response to the pandemic. As corporations, academics, governments, and civil society discuss the right way to implement these apps, we noticed recurring implicit assumptions. The proposed solutions are designed for a world where Internet access and smartphone ownership are a given, people are willing and able to install these apps, and those who receive notifications about potential exposure to the virus have access to testing and can isolate safely. In this work we challenge these assumptions. We not only show that there are not enough smartphones worldwide to reach required adoption thresholds but also highlight a broad lack of internet access, which affects certain groups more: the elderly, those with lower incomes, and those with limited ability to socially distance. Unfortunately, these are also the groups that are at the highest risks from COVID-19. We also report that the contact tracing apps that are already deployed on an opt-in basis show disappointing adoption levels. We warn about the potential consequences of over-extending the existing state and corporate surveillance powers. Finally, we describe a multitude of scenarios where contact tracing apps will not help regardless of access or policy. In this work we call for a comprehensive and equitable policy response that prioritizes the needs of the most vulnerable, protects human rights, and considers long term impact instead of focusing on technology-first fixes.
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdowns for emergency containment. Large-scale digital contact tracing (DCT) has emerged as a potential solution to resume economic and social activity while minimizing spread of the virus. Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individuals test results, with corresponding binary recommendations that either all or none of the individuals contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or pre-existing medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individuals infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individuals contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). We find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe re-opening and second-wave prevention.
The spread of an infectious disease through a population can be modeled using a network or a graph. In digital advertising, internet device graphs are graph data sets that organize identifiers produced by mobile phones, PCs, TVs, and tablets as they access media on the internet. Characterized by immense scale, they have become ubiquitous as they enable targeted advertising, content customization and tracking. This paper posits that internet device graphs, in particular those based on IP colocation, can provide significant utility in predicting and modeling the spread of infectious disease. Starting the week of March 16th, 2020, in the United States, many individuals began to `shelter-in-place as schools and workplaces across the nation closed because of the COVID-19 pandemic. This paper quantifies the effect of the shelter-in-place orders on a large scale internet device graph with more than a billion nodes by studying the graph before and after orders went into effect. The effects are clearly visible. The structure of the graph suggests behavior least conducive to transmission of infection occurred in the US between April 12th and 19th, 2020. This paper also discusses the utility of device graphs for i) contact tracing, ii) prediction of `hot spots, iii) simulation of infectious disease spread, and iv) delivery of advertisement-based warnings to potentially exposed individuals. The paper also posits an overarching question: can systems and datasets amassed by entities in the digital ad ecosystem aid in the fight against COVID-19?
Digital contact tracing of an infected person, testing the possible infection for the contacted persons, and isolation play a crucial role in alleviating the outbreak. Here, we design a dynamic graph streaming algorithm that can trace the contacts under the control of the Public Health Authorities (PHA). Our algorithm receives proximity data from the mobile devices as contact data streams and uses a sliding window model to construct a dynamic contact graph sketch. Prominently, we introduce the edge label of the contact graph as a binary contact vector, which acts like a sliding window and holds the latest D days (incubation period) of temporal social interactions. Notably, the algorithm prepares the direct and indirect (multilevel) contact list from the contact graph sketch for a given set of infected persons. Finally, the algorithm also uses a disjoint set data structure to construct the infection pathways for the trace list. The present study offers the design of algorithms with underlying data structures for digital contact trace relevant to the proximity data produced by Bluetooth enabled mobile devices. Our analysis reveals that for COVID-19 close contact parameters, the storage space requires maintaining the contact graph of ten million users; having 14 days of close contact data in the PHA server takes 55 Gigabytes of memory and preparation of the contact list for a given set of the infected person depends on the size of the infected list. Our centralized digital contact tracing framework can also be applicable for other relevant diseases parameterized by an incubation period and proximity duration of contacts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا