Do you want to publish a course? Click here

Late-time Observations of Calcium-Rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source

105   0   0.0 ( 0 )
 Added by Wynn Jacobson-Galan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present $textit{Hubble Space Telescope}$ imaging of the Calcium-rich supernova (SN) 2019ehk at 276 - 389 days after explosion. These observations represent the latest photometric measurements of a Calcium-rich transient to date and allows for the first opportunity to analyze the late-time evolution of an object in this observational SN class. We find that the late-time bolometric light curve of SN 2019ehk can be described predominantly through the radioactive decay of ${}^{56}textrm{Co}$ for which we derive a mass of $M({}^{56}textrm{Co}) = (2.8 pm 0.1) times 10^{-2}$$rm{M}_odot$. Furthermore, the rate of decline in bolometric luminosity requires the leakage of $gamma$-rays on timescale $t_{gamma} = 53.9 pm 1.30$ days, but we find no statistical evidence for incomplete positron trapping in the SN ejecta. While our observations cannot constrain the exact masses of other radioactive isotopes synthesized in SN 2019ehk, we estimate a mass ratio limit of $M({}^{57}textrm{Co}) / M({}^{56}textrm{Co}) leq 0.030$. This limit is consistent with the explosive nucleosynthesis produced in the merger of low-mass white dwarfs, which is one of the favored progenitor scenarios in early-time studies of SN 2019ehk.



rate research

Read More

We present optical and near-infrared observations of SN~Ib~2019ehk. We show that it evolved to a Ca-rich transient according to its spectral properties and evolution in late phases. It, however, shows a few distinguishable properties from the canonical Ca-rich transients: a short-duration first peak in the light curve, high peak luminosity, and association with a star-forming environment. Indeed, some of these features are shared with iPTF14gqr and iPTF16hgs, which are candidates for a special class of core-collapse SNe (CCSNe): the so-called ultra-stripped envelope SNe, i.e., a relatively low-mass He (or C+O) star explosion in a binary as a precursor of double neutron star binaries. The estimated ejecta mass ($0.43 M_odot$) and explosion energy ($1.7 times 10^{50} $~erg) are consistent with this scenario. The analysis of the first peak suggests existence of dense circumstellar material in the vicinity of the progenitor, implying a CCSN origin. Based on these analyses, we suggest SN 2019ehk is another candidate for an ultra-stripped envelope SN. These ultra-stripped envelope SN candidates seem to form a subpopulation among Ca-rich transients, associated with young population. We propose that the key to distinguishing this population is the early first peak in their light curves.
We present panchromatic observations and modeling of the Calcium-rich supernova 2019ehk in the star-forming galaxy M100 (d$approx$16.2 Mpc) starting 10 hours after explosion and continuing for ~300 days. SN 2019ehk shows a double-peaked optical light curve peaking at $t = 3$ and $15$ days. The first peak is coincident with luminous, rapidly decaying $textit{Swift}$-XRT discovered X-ray emission ($L_xapprox10^{41}~rm{erg~s^{-1}}$ at 3 days; $L_x propto t^{-3}$), and a Shane/Kast spectral detection of narrow H$alpha$ and He II emission lines ($v approx 500$ km/s) originating from pre-existent circumstellar material. We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at $r<10^{15}$ cm and the resulting cooling emission. We calculate a total CSM mass of $sim$ $7times10^{-3}$ $rm{M_{odot}}$ with particle density $napprox10^{9},rm{cm^{-3}}$. Radio observations indicate a significantly lower density $n < 10^{4},rm{cm^{-3}}$ at larger radii. The photometric and spectroscopic properties during the second light curve peak are consistent with those of Ca-rich transients (rise-time of $t_r =13.4pm0.210$ days and a peak B-band magnitude of $M_B =-15.1pm0.200$ mag). We find that SN 2019ehk synthesized $(3.1pm0.11)times10^{-2} ~ rm{M_{odot}}$ of ${}^{56}textrm{Ni}$ and ejected $M_{rm ej} = (0.72pm 0.040)~rm{M_{odot}}$ total with a kinetic energy $E_{rm k}=(1.8pm0.10)times10^{50}~rm{erg}$. Finally, deep $textit{HST}$ pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10 $rm{M_{odot}}$) in binaries that lost most of their He envelope or white dwarfs. The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD + CO WD binaries.
We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138$-$G10 (D $sim 14.8$ Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the supernova from days +89 to +457 post-maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of a SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from supernova to supernova remnant (SNR). Specifically, we find SN 2013bys H$alpha$ profile exhibits significant broadening ($sim$ 10,000 km s$^{-1}$) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using inverse-Compton scattering processes alone but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 $mu$m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL supernova. We compare SN 2013by to Type IIP supernovae whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.
(Abridged) Using the Zwicky Transient Facility alert stream, we are conducting a large campaign to spectroscopically classify all transients occurring in galaxies in the Census of the Local Universe (CLU) catalog. The aim of the experiment is to construct a spectroscopically complete, volume-limited sample of transients coincident within 100 of CLU galaxies out to 200 Mpc, and to a depth of 20 mag. We describe the survey design and spectroscopic completeness from the first 16 months of operations. We present results from a systematic search for Calcium rich gap transients in the sample of 22 low luminosity (peak absolute magnitude $M > -17$), hydrogen poor events found in the experiment (out of 754 spectroscopically classified SNe). We report the detection of eight Calcium rich gap transients, and constrain their volumetric rate to be at least $approx 15pm5$% of the SN Ia rate. Combining this sample with ten events from the literature, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations of events distinguished by their red ($g - r approx 1.5$ mag) or green ($g - r approx 0.5$ mag) spectral colors at $r$-band peak, wherein redder events show strong line blanketing signatures, slower light curves, weaker He lines and lower [Ca II]/[O I] in the nebular phase. Together, we find that the spectroscopic continuum, volumetric rates and striking old environments are consistent with the explosive burning of He shells on low mass white dwarfs. We posit that Ca-Ia and red Ca-Ib/c objects are consistent with the double detonation of He shells with high He burning efficiency, while green Ca-Ib/c objects could arise from less efficient He burning scenarios such as detonations in low density He shells or He shell deflagrations.
The progenitor systems of the class of Ca-rich transients is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multi-wavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and Type Ib/c supernovae. iPTF15eqv has among the highest [Ca II]/[O I] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a < 10 solar mass star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment ($n <$ 0.1 cm$^{-3}$) within a radius of $sim 10^{17}$ cm. Chandra X-ray Observatory observations rule out alternative scenarios involving tidal disruption of a white dwarf by a black hole, for masses > 100 solar masses). Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from white dwarf progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا