No Arabic abstract
We present panchromatic observations and modeling of the Calcium-rich supernova 2019ehk in the star-forming galaxy M100 (d$approx$16.2 Mpc) starting 10 hours after explosion and continuing for ~300 days. SN 2019ehk shows a double-peaked optical light curve peaking at $t = 3$ and $15$ days. The first peak is coincident with luminous, rapidly decaying $textit{Swift}$-XRT discovered X-ray emission ($L_xapprox10^{41}~rm{erg~s^{-1}}$ at 3 days; $L_x propto t^{-3}$), and a Shane/Kast spectral detection of narrow H$alpha$ and He II emission lines ($v approx 500$ km/s) originating from pre-existent circumstellar material. We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at $r<10^{15}$ cm and the resulting cooling emission. We calculate a total CSM mass of $sim$ $7times10^{-3}$ $rm{M_{odot}}$ with particle density $napprox10^{9},rm{cm^{-3}}$. Radio observations indicate a significantly lower density $n < 10^{4},rm{cm^{-3}}$ at larger radii. The photometric and spectroscopic properties during the second light curve peak are consistent with those of Ca-rich transients (rise-time of $t_r =13.4pm0.210$ days and a peak B-band magnitude of $M_B =-15.1pm0.200$ mag). We find that SN 2019ehk synthesized $(3.1pm0.11)times10^{-2} ~ rm{M_{odot}}$ of ${}^{56}textrm{Ni}$ and ejected $M_{rm ej} = (0.72pm 0.040)~rm{M_{odot}}$ total with a kinetic energy $E_{rm k}=(1.8pm0.10)times10^{50}~rm{erg}$. Finally, deep $textit{HST}$ pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10 $rm{M_{odot}}$) in binaries that lost most of their He envelope or white dwarfs. The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD + CO WD binaries.
Calcium rich gap transients represent an intriguing new class of faint and fast evolving supernovae that exhibit strong [Ca II] emission in their nebular phase spectra. In this paper, we present the discovery and follow-up observations of iPTF 16hgs -- an intermediate luminosity and fast evolving transient that exhibited a double peaked light curve. Exhibiting a typical Type Ib spectrum in the photospheric phase and an early transition to a [Ca II] dominated nebular phase, we show that iPTF 16hgs shows properties consistent with the class of Ca-rich gap transients, with two interesting exceptions. First, while the second peak of the light curve is similar to other Ca-rich gap transients (suggesting $M_{ej}$ of 0.4 M$_odot$ and peak luminosity of $3 times 10^{41}$ ergs s$^{-1}$), we show that the first blue and fast declining (over $2$ days) peak is unique to this source. Second, with Integral Field Unit observations of the host galaxy, we find that iPTF 16hgs occurred in the outskirts (projected offset of $6$ kpc $ = 1.9 R_{eff}$) of a low metallicity (0.4 Z$_odot$), star forming, dwarf spiral galaxy. Using deep late-time VLA and uGMRT observations, we place stringent limits on the local environment of the source, ruling out a large parameter space of circumstellar densities and mass loss environments of the progenitor. If iPTF 16hgs shares explosion physics with the class of Ca-rich gap transients, the presence of the first peak can be explained by enhanced mixing of 0.01 M$_odot$ of $^{56}$Ni into the outer layers the ejecta, reminiscent of some models of He-shell detonations on WDs. On the other hand, if iPTF 16hgs is physically unrelated to the class, the first peak is consistent with shock cooling emission (of an envelope with a mass of 0.08 M$_odot$ and radius of 13 R$_odot$) associated with a core-collapse explosion of a highly stripped massive star in a close binary system.
We present $textit{Hubble Space Telescope}$ imaging of the Calcium-rich supernova (SN) 2019ehk at 276 - 389 days after explosion. These observations represent the latest photometric measurements of a Calcium-rich transient to date and allows for the first opportunity to analyze the late-time evolution of an object in this observational SN class. We find that the late-time bolometric light curve of SN 2019ehk can be described predominantly through the radioactive decay of ${}^{56}textrm{Co}$ for which we derive a mass of $M({}^{56}textrm{Co}) = (2.8 pm 0.1) times 10^{-2}$$rm{M}_odot$. Furthermore, the rate of decline in bolometric luminosity requires the leakage of $gamma$-rays on timescale $t_{gamma} = 53.9 pm 1.30$ days, but we find no statistical evidence for incomplete positron trapping in the SN ejecta. While our observations cannot constrain the exact masses of other radioactive isotopes synthesized in SN 2019ehk, we estimate a mass ratio limit of $M({}^{57}textrm{Co}) / M({}^{56}textrm{Co}) leq 0.030$. This limit is consistent with the explosive nucleosynthesis produced in the merger of low-mass white dwarfs, which is one of the favored progenitor scenarios in early-time studies of SN 2019ehk.
We present a Chandra observation of SN 2016hnk, a candidate Ca-rich gap transient. This observation was specifically designed to test whether or not this transient was the result of the tidal detonation of a white dwarf by an intermediate-mass black hole. Since we detect no X-ray emission 28 days after the discovery of the transient, as predicted from fall-back accretion, we rule out this model. Our upper limit of $sim 10$ M$_odot$ does not allow us to rule out a neutron star or stellar-mass black hole detonator due limits on the sensitivity of Chandra to soft X-rays and unconstrained variables tied to the structure of super-Eddington accretion disks. Together with other Chandra and multiwavelength observations, our analysis strongly argues against the intermediate-mass black hole tidal detonation scenario for Ca-rich gap transients more generally.
We present optical and near-infrared observations of SN~Ib~2019ehk. We show that it evolved to a Ca-rich transient according to its spectral properties and evolution in late phases. It, however, shows a few distinguishable properties from the canonical Ca-rich transients: a short-duration first peak in the light curve, high peak luminosity, and association with a star-forming environment. Indeed, some of these features are shared with iPTF14gqr and iPTF16hgs, which are candidates for a special class of core-collapse SNe (CCSNe): the so-called ultra-stripped envelope SNe, i.e., a relatively low-mass He (or C+O) star explosion in a binary as a precursor of double neutron star binaries. The estimated ejecta mass ($0.43 M_odot$) and explosion energy ($1.7 times 10^{50} $~erg) are consistent with this scenario. The analysis of the first peak suggests existence of dense circumstellar material in the vicinity of the progenitor, implying a CCSN origin. Based on these analyses, we suggest SN 2019ehk is another candidate for an ultra-stripped envelope SN. These ultra-stripped envelope SN candidates seem to form a subpopulation among Ca-rich transients, associated with young population. We propose that the key to distinguishing this population is the early first peak in their light curves.
We present the first coordinated soft and hard 0.3-80 keV X-ray campaign of the extragalactic supernova SN 2014C in the first $sim$2307 d of its evolution. SN 2014C initially appeared to be an ordinary type Ib explosion but evolved into a strongly-interacting hydrogen-rich type IIn SN over $sim1 rm{yr}$. We observed signatures of interaction with a dense medium across the X-ray spectrum, which revealed the presence of a $sim 1-2 rm{M}_{odot}$ shell of material at $sim6times10^{16} rm{cm}$ from the progenitor. This finding challenges current understanding of hydrogen-poor core-collapse progenitor evolution. Potential scenarios to interpret these observations include (i) the ejection of the hydrogen envelope by the progenitor star in the centuries prior to the explosion; (ii) interaction of the fast Wolf-Rayet (WR) star wind with the slow, dense wind of the Red Super Giant (RSG) phase, with an anomalously short WR phase.