No Arabic abstract
High pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here we report the synthesis at ~90 GPa of novel beryllium polynitrides, monoclinic and triclinic BeN4. The triclinic phase, upon decompression to ambient conditions, transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds consisting of polyacetylene-like nitrogen chains with conjugated {pi}-systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e. beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics and Majorana fermions. However, these exotic physical effects have rarely been realized in experiment, due to the lacking of suitable working materials. Here we predict that van der Waals layered MnBi$_2$Te$_4$-family materials show two-dimensional (2D) ferromagnetism in the single layer and three-dimensional (3D) $A$-type antiferromagnetism in the bulk, which could serve as a next-generation material platform for the state-of-art research. Remarkably, we predict extremely rich topological quantum effects with outstanding features in an experimentally available material MnBi$_2$Te$_4$, including a 3D antiferromagnetic topological insulator with the long-sought topological axion states, the type-II magnetic Weyl semimetal (WSM) with simply one pair of Weyl points, and the high-temperature intrinsic QAH effect. These striking predictions, if proved experimentally, could profoundly transform future research and technology of topological quantum physics.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Magnetic van der Waals (vdW) materials have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far magnetic vdW materials are mainly insulating or semiconducting, and none of them possesses a high electronic mobility - a property that is rare in layered vdW materials in general. The realization of a magnetic high-mobility vdW material would open the possibility for novel magnetic twistronic or spintronic devices. Here we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus, and is only surpassed by graphite. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers, and that the magnetic order and relatively high mobility is retained in approximately 20-nm-thin flakes.
In this work, we expand the set of known layered compounds to include ionic layered materials, which are well known for superconducting, thermoelectric, and battery applications. Focusing on known ternary compounds from the ICSD, we screen for ionic layered structures by expanding upon our previously developed algorithm for identification of van der Waals (vdW) layered structures, thus identifying over 1,500 ionic layered compounds. Since vdW layered structures can be chemically mutated to form ionic layered structures, we have developed a methodology to structurally link binary vdW to ternary ionic layered materials. We perform an in-depth analysis of similarities and differences between these two classes of layered systems and assess the interplay between layer geometry and bond strength with a study of the elastic anisotropy. We observe a rich variety of anisotropic behavior in which the layering direction alone is not a simple predictor of elastic anisotropy. Our results enable discovery of new layered materials through intercalation or de- intercalation of vdW or ionic layered systems, respectively, as well as lay the groundwork for studies of anisotropic transport phenomena such as sound propagation or lattice thermal conductivity.
Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.