Do you want to publish a course? Click here

Axionlike particles searches in reactor experiments

85   0   0.0 ( 0 )
 Added by Diego Aristizabal
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10 MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the $sim$MeV ALP mass range and ALP-electron couplings of the order of $g_{aee} sim 10^{-8}$ as well as ALP-nucleon couplings of the order of $g_{ann}^{(1)} sim 10^{-9}$, testing regions beyond TEXONO and Borexino limits.



rate research

Read More

Searches for pseudoscalar axion-like-particles (ALPs) typically rely on their decay in beam dumps or their conversion into photons in haloscopes and helioscopes. We point out a new experimental direction for ALP probes through their production via the Primakoff process or Compton-like scattering off of electrons or nuclei. We consider ALPs produced by the intense gamma ray flux available from megawatt-scale nuclear reactors at neutrino experiments through Primakoff-like or Compton-like channels. Low-threshold detectors in close proximity to the core will have visibility to ALP decays and inverse Primakoff and Compton scattering, providing sensitivity to the ALP-photon and ALP-electron couplings. We find that the sensitivity to these couplings at the ongoing MINER neutrino experiment exceeds existing limits set by laboratory experiments and, for the ALP-electron coupling, we forecast the worlds best laboratory-based constraints over a large portion of the sub-MeV ALP mass range.
71 - Manuel Meyer 2016
Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external electromagnetic fields. Here, we provide a short review over ALP searches that utilize astrophysical $gamma$-ray observations. We summarize current bounds as well as future sensitivities and discuss the possibility that ALPs alter the $gamma$-ray opacity of the Universe.
80 - HyangKyu Park 2017
We propose to search for light $U(1)$ dark photons, $A$, produced via kinetically mixing with ordinary photons via the Compton-like process, $gamma e^- rightarrow A e^-$, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on $epsilon$, the $A$-$gamma$ mixing parameter, $epsilon$, for dark-photon masses below 1$sim$MeV of $epsilon~< ~1.3times 10^{-5}$ and $epsilon~<~2.1times 10^{-5}$, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
242 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at $sim$60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of $|Delta m^2_{32}|$. The standard $chi^2$ method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا