Do you want to publish a course? Click here

MIRISim: A Simulator for the Mid-Infrared Instrument on JWST

124   0   0.0 ( 0 )
 Added by Pamela Klaassen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST), has imaging, four coronagraphs and both low and medium resolution spectroscopic modes . Being able to simulate MIRI observations will help commissioning of the instrument, as well as get users familiar with representative data. We designed the MIRI instrument simulator (MIRISim) to mimic the on-orbit performance of the MIRI imager and spectrometers using the Calibration Data Products (CDPs) developed by the MIRI instrument team. The software encorporates accurate representations of the detectors, slicers, distortions, and noise sources along the light path including the telescopes radiative background and cosmic rays. The software also includes a module which enables users to create astronomical scenes to simulate. MIRISim is a publicly available Python package that can be run at the command line, or from within Python. The outputs of MIRISim are detector images in the same uncalibrated data format that will be delivered to MIRI users. These contain the necessary metadata for ingestion by the JWST calibration pipeline.



rate research

Read More

The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 microns. MIRI has, within a single package, four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectroscopy, and medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of < 6.7 K. This paper describes the driving principles behind the design of MIRI, the primary design parameters, and their realization in terms of the as-built instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements.
We present an estimate of the performance that will be achieved during on orbit operations of the JWST Mid Infrared Instrument, MIRI. The efficiency of the main imager and spectrometer systems in detecting photons from an astronomical target are presented, based on measurements at sub-system and instrument level testing, with the end-to-end transmission budget discussed in some detail. The brightest target fluxes that can be measured without saturating the detectors are provided. The sensitivity for long duration observations of faint sources is presented in terms of the target flux required to achieve a signal to noise ratio of 10 after a 10,000 second observation. The algorithms used in the sensitivity model are presented, including the understanding gained during testing of the MIRI Flight Model and flight-like detectors.
We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 X 7.7 arcseconds in extent and at spectral resolving powers ranging from 1,300 to 3,700. Each channel includes an all-reflective integral field unit (IFU): an image slicer that reformats the input field for presentation to a grating spectrometer. Two 1024 X 1024 focal plane arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5 to 28.5 micron spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage and resolution. The point spread function of the reconstructed images is shown to be diffraction limited and the optical transmission is shown to be consistent with the design expectations.
In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 011 pixel scale and a total unobstructed view of 74x113. The remainder of its nominal 113x113 field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.
66 - S. Kendrew 2015
The Low Resolution Spectrometer of the MIRI, which forms part of the imager module, will provide R~100 long-slit and slitless spectroscopy from 5 to 12 micron. The design is optimised for observations of compact sources, such as exoplanet host stars. We provide here an overview of the design of the LRS, and its performance as measured during extensive test campaigns, examining in particular the delivered image quality, dispersion, and resolving power, as well as spectrophotometric performance, flatfield accuracy and the effects of fringing. We describe the operational concept of the slitless mode, which is optimally suited to transit spectroscopy of exoplanet atmospheres. The LRS mode of the MIRI was found to perform consistently with its requirements and goals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا