No Arabic abstract
In this paper, we demonstrate that a phenomenon described as topological inflation during which inflation occurs inside the core of topological defects, has a non-topological counterpart. This appears in a simple set-up containing Einstein gravity coupled minimally to an electromagnetic field as well as a self-interacting, complex valued scalar field. The U(1) symmetry of the model is unbroken and leads to the existence of globally regular solutions, so-called boson stars, that develop a horizon for sufficiently strong gravitational coupling. We also find that the same phenomenon exists for black holes with scalar hair.
We analytically derive a class of non-singular, static and spherically symmetric topological black hole metrics inF(R)-gravity. These have not a de Sitter core at their centre, as most model in standard General Relativity. We study the geometric properties and the motion of test particles around these objects. Since they have two horizons, the inner being of Cauchy type, we focus on the problem of mass inflation and show that it occurs except when some extremal conditions are met.
We discuss the possibility of producing a significant fraction of dark matter in the form of primordial black holes in the context of the pre-big bang inflationary scenario. We take into account, to this purpose, the enhancement of curvature perturbations possibly induced by a variation of the sound-speed parameter $c_s$ during the string phase of high-curvature inflation. After imposing all relevant observational constraints, we find that the considered class of models is compatible with the production of a large amount of primordial black holes in the mass range relevant to dark matter, provided the sound-speed parameter is confined in a rather narrow range of values, $0.003 < c_s < 0.01$.
We construct a black hole whose interior is the false vacuum and whose exterior is the true vacuum of a classical field theory. From the outside the metric is the usual Schwarzschild one, but from the inside the space is de Sitter with a cosmological constant determined by the energy of the false vacuum. The parameters of the field potential may allow for the false vacuum to exist for more than the present age of the universe. A potentially relevant effective field theory within the context of QCD results in a Schwarzschild radius of about 200 km.
We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. ${M_P} sim {10^{18}},{rm{GeV}}$. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order ${M_P}/100 sim ;{10^{16}}{rm{GeV}}$ and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill in this omission by ruling out the existence of stationary black hole solutions even when the scalar field may have time dependence. Our proof is fairly general, and in particular applies to non-canonical scalar fields and certain non-asymptotically flat spacetimes. It also does not rely upon the spacetime being a black hole.