Do you want to publish a course? Click here

PCI-express based high-speed readout for the BelleII DAQ upgrade

205   0   0.0 ( 0 )
 Added by Qi-Dong Zhou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Belle II is a new-generation B-factory experiment, dedicated to exploring new physics beyond the standard model of elementary particles in the flavor sector. Belle~II started data-taking in April 2018, using a synchronous data acquisition (DAQ) system based on pipelined trigger flow control. The Belle II DAQ system is designed to handle a 30-kHz trigger rate with approximately 1% of dead time, under the assumption of a raw event size of 1 MB. The DAQ system is reliable, and the overall data-taking efficiency reached 84.2% during the run period of January 2020 to June 2020. The current readout system cannot be operated in the term of 10 years from the viewpoint of DAQ maintainability; meanwhile, the readout system is obstructing high-speed data transmission. A solution involving a PCI-express-based readout module with high data throughput of up to 100 Gb/s was adopted to upgrade the Belle II DAQ system. We particularly focused on the design of firmware and software based on this new generation of readout board, called PCIe40, with an Altera Arria 10 field-programmable gate array chip. Forty-eight GBT (GigaBit Transceiver) serial links, PCI-express hard IP-based DMA architecture, interface of timing and trigger distribution system, and slow control system were designed to integrate with the current Belle II DAQ system. This paper describes the performances accomplished during the data readout and slow control tests conducted using a test bench and a demonstration performed using on-site front-end electronics, specifically involving Belle II TOP and KLM sub-detectors.



rate research

Read More

182 - A. Dawiec 2011
XPAD3 is a large surface X-ray photon counting imager with high count rates, large counter dynamics and very fast data readout. Data are readout in parallel by a PCI Express interface using DMA transfer. The readout frame rate of the complete detector comprising 0.5 MPixels amounts to 500 images per second without dead-time.
This paper presents a readout system designed for testing the prototype of Small-Strip Thin Gap Chamber (sTGC), which is one of the main detector technologies used for ATLAS New-Small-Wheel Upgrade. This readout system aims at testing one full-size sTGC quadruplet with cosmic muon triggers.
Submersible Buoy (SB) is an important apparatus capable of long-term, fixed-point, continuous and multi-directional measurement of acoustic signals and hydrological environment monitoring in the harsh marine environment, providing important information for hydrological environment research, marine organism research and protection. We will describe a real-time data acquisition (DAQ) system with multiple designs to meet low-power consumption and high-speed data transmission.
271 - B. Bauss , A. Brogna , V. Bucher 2018
To cope with the enhanced luminosity at the Large Hadron Collider (LHC) in 2021, the ATLAS collaboration is planning a major detector upgrade. As a part of this, the Level 1 trigger based on calorimeter data will be upgraded to exploit the fine granularity readout using a new system of Feature EXtractors (FEX), which each reconstruct different physics objects for the trigger selection. The jet FEX (jFEX) system is conceived to provide jet identification (including large area jets) and measurements of global variables within a latency budget of less then 400ns. It consists of 6 modules. A single jFEX module is an ATCA board with 4 large FPGAs of the Xilinx Ultrascale+ family, that can digest a total input data rate of ~3.6 Tb/s using up to 120 Multi Gigabit Transceiver (MGT), 24 electrical optical devices, board control and power on the mezzanines to allow flexibility in upgrading controls functions and components without affecting the main board. The 24-layers stack-up was carefully designed to preserve the signal integrity in a very densely populated high speed signal board selecting MEGTRON6 as the most suitable PCB material. This contribution reports on the design challenges and the test results of the jFEX prototypes. In particular the fully assembled final prototype has been tested up to 12.8 Gb/s in house and in integrated tests at CERN. The full jFEX system will be produced by the end of 2018 to allow for installation and commissioning to be completed before LHC restarts in March 2021.
227 - B. Acar , G. Adamov , C. Adloff 2020
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${approx}12,000rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا