No Arabic abstract
Planck Galactic Cold Clumps (PGCCs) are contemplated to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3,mm (band 6) using three different configurations (resolutions $sim$ 0$farcs$35, 1$farcs$0, and 7$farcs$0) to statistically investigate their evolutionary stages and sub-structures. We have obtained images of the 1.3,mm continuum and molecular line emission ($^{12}$CO, and SiO) at an angular resolution of $sim$ 0$farcs$35 ($sim$ 140,au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust-mass $sim$ 0.093,M$_{sun}$ and deconvolved size $sim$ 0$farcs$27. Dense substructures are clearly detected within the central 1000,au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class,0 to Class,I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 ($>$50%) show high-velocity jets in SiO. The CO velocity-extents ($Delta$Vs) span from 4 to 110 km/s with outflow cavity opening angle width at 400,au ranging from $[Theta_{obs}]_{400}$ $sim$ 0$farcs$6 to 3$farcs$9, which corresponds to 33$fdg$4$-$125$fdg$7. For the majority of the outflow sources, the $Delta$Vs show a positive correlation with $[Theta_{obs}]_{400}$, suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
We report the detection of four new hot corino sources, G211.47-19.27S, G208.68-19.20N1, G210.49-19.79W and G192.12-11.10 from a survey study of Planck Galactic Cold Clumps in the Orion Molecular Cloud Complex with the Atacama Compact Array (ACA). Three sources had been identified as low mass Class 0 protostars in the Herschel Orion Protostar Survey (HOPS). One source in the lambda Orionis region is firstly reported as a protostellar core. We have observed abundant complex organic molecules (COMs), primarily methanol but also other oxygen-bearing COMs (in G211.47-19.27S and G208.68-19.20N1) and the molecule of prebiotic interest NH2CHO (in G211.47-19.27S), signifying the presence of hot corinos. While our spatial resolution is not sufficient for resolving most of the molecular emission structure, the large linewidth and high rotational temperature of COMs suggest that they likely reside in the hotter and innermost region immediately surrounding the protostar. In G211.47-19.27S, the D/H ratio of methanol ([CH2DOH]/[CH3OH]) and the 12C/13C ratio of methanol ([CH3OH]/[13CH3OH]) are comparable to those of other hot corinos. Hydrocarbons and long carbon-chain molecules such as c-C3H2 and HCCCN are also detected in the four sources, likely tracing the outer and cooler molecular envelopes.
Prestellar cores are self-gravitating dense and cold structures within molecular clouds where future stars are born. They are expected, at the stage of transitioning to the protostellar phase, to harbor centrally concentrated dense (sub)structures that will seed the formation of a new star or the binary/multiple stellar systems. Characterizing this critical stage of evolution is key to our understanding of star formation. In this work, we report the detection of high density (sub)structures on the thousand-au scale in a sample of dense prestellar cores. Through our recent ALMA observations towards the Orion molecular cloud, we have found five extremely dense prestellar cores, which have centrally concentrated regions $sim$ 2000 au in size, and several $10^7$ $cm^{-3}$ in average density. Masses of these centrally dense regions are in the range of 0.30 to 6.89 M$_odot$. {it For the first time}, our higher resolution observations (0.8$ sim $ 320 au) further reveal that one of the cores shows clear signatures of fragmentation; such individual substructures/fragments have sizes of 800 -1700 au, masses of 0.08 to 0.84 M$_odot$, densities of $2 - 8times 10^7$ $cm^{-3}$ and separations of $sim 1200$ au. The substructures are massive enough ($gtrsim 0.1~M_odot$) to form young stellar objects and are likely examples of the earliest stage of stellar embryos which can lead to widely ($sim$ 1200 au) separated multiple systems.
The low dust temperatures (<14 K) of Planck Galactic Cold Clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. TOP-SCOPE is a joint survey program targeting ~2000 PGCCs in J=1-0 transitions of CO isotopologues and ~1000 PGCCs in 850 micron continuum emisison. The objective of the TOP-SCOPE survey and the joint surveys (SMT 10-m, KVN 21-m and NRO 45-m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, the length and the mean line-mass (M/L) of the G26 filament are ~6200 Msun, ~12 pc and ~500 Msun/pc, respectively. Ten massive clumps including eight starless ones are found along the filament. The most massive Clump as a whole may be still in global collapse while its denser part seems to be undergoing expansion due to outflow feedback. The fragmentation in G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, non-magnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index ($beta$) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed due to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrogen H$_2$ and improves our understanding of the atomic to molecular transition in the interstellar medium. HINSA was found in 58% PGCCs that we observed. The column density of HINSA was found to have an intermediate correlation with that of $^{13}$CO, following $rm log( N(HINSA)) = (0.52pm 0.26) log(N_{^{13}CO}) + (10 pm 4.1) $. HI abundance relative to total hydrogen [HI]/[H] has an average value of $4.4times 10^{-3}$, which is about 2.8 times of the average value of previous HINSA surveys toward molecular clouds. For clouds with total column density N$rm_H >5 times 10^{20}$ cm$^{-2}$, an inverse correlation between HINSA abundance and total hydrogen column density is found, confirming the depletion of cold HI gas during molecular gas formation in more massive clouds. Nonthermal line width of $^{13}$CO is about 0-0.5 km s$^{-1}$ larger than that of HINSA. One possible explanation of narrower nonthermal width of HINSA is that HINSA region is smaller than that of $^{13}$CO. Based on an analytic model of H$_2$ formation and H$_2$ dissociation by cosmic ray, we found the cloud ages to be within 10$^{6.7}$-10$^{7.0}$ yr for five sources.
Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13}$CO and C$^{18}$O J=1-0 lines, using the Purple Mountain Observatory 13.7-m telescope. $^{12}$CO (1-0) and $^{13}$CO (1-0) emission was detected in all clumps while C$^{18}$O (1-0) emission was only seen in sixteen clumps. The highest and average latitudes are $71.4^{circ}$ and $37.8^{circ}$, respectively. Fifty-one velocity components were obtained and then each was identified as a single clump. Thirty-three clumps were further mapped at 1$^prime$ resolution and 54 dense cores were extracted. Among dense cores, the average excitation temperature $T_{mathrm{ex}}$ of $^{12}$CO is 10.3 K. The average line widths of thermal and non-thermal velocity dispersions are $0.19$ km s$^{-1}$ and $0.46$ km s$^{-1}$ respectively, suggesting that these cores are dominated by turbulence. Distances of the HGal clumps given by Gaia dust reddening are about $120-360$ pc. The ratio of $X_{13}$/$X_{18}$ is significantly higher than that in the solar neighbourhood, implying that HGal gas has a different star formation history compared to the gas in the Galactic disk. HGal cores with sizes from $0.01-0.1$ pc show no notable Larsons relation and the turbulence remains supersonic down to a scale of slightly below $0.1$ pc. None of the HGal cores which bear masses from 0.01-1 $M_{odot}$ are gravitationally bound and all appear to be confined by outer pressure.