Do you want to publish a course? Click here

Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules

157   0   0.0 ( 0 )
 Added by Rainer Hillenbrand
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phonon polaritons (PPs) in van der Waals (vdW) materials can strongly enhance light-matter interactions at mid-infrared frequencies, owing to their extreme infrared field confinement and long lifetimes. PPs thus bear potential for achieving vibrational strong coupling (VSC) with molecules. Although the onset of VSC has recently been observed spectroscopically with PP nanoresonators, no experiments so far have resolved VSC in real space and with propagating modes in unstructured layers. Here, we demonstrate by real-space nanoimaging that VSC can be achieved between propagating PPs in thin vdW crystals (specifically h-BN) and molecular vibrations in adjacent thin molecular layers. To that end, we performed near-field polariton interferometry, showing that VSC leads to the formation of a propagating hybrid mode with a pronounced anti-crossing region in its dispersion, in which propagation with negative group velocity is found. Numerical calculations predict VSC for nanometer-thin molecular layers and PPs in few-layer vdW materials, which could make propagating PPs a promising platform for ultra-sensitive on-chip spectroscopy and strong coupling experiments.



rate research

Read More

We report on strong coupling between surface plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.
Strong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the much less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a cavity polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. The tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.
Plasmonic dimer cavities can induce extreme electric-field hot spots that allow one to access ultrastrong coupling regimes using Raman-type spectroscopy on single vibrating molecules. Using a generalized master equation, we study resonant Raman scattering in the strong coupling regime of cavity-QED, when also in the vibrational ultrastrong coupling regime, leading to phonon-dressed polaritons. The master equation rigorously includes spectral baths for the cavity and vibrational degrees of freedom, as well as a pure dephasing bath for the resonant two-level system, which play a significant role. Employing realistic parameters for gold dimer cavity modes, we investigate the emission spectra in several characteristic strong-coupling regimes, leading to extremely rich spectral resonances due to an interplay of phonon-modified polariton states and bath-induced resonances. We also show explicitly the failure of the standard master equation in these quantum nonlinear regimes.
The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic devices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions are crucial in determining the device properties. Here, we introduce a new in-situ spectroscopic ellipsometry data analysis method called DART with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wavefunctions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate (SiO2). Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features - in comparison to C60 deposited on SiO2 - of the electronic wavefunctions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wavefunctions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during deposition are possible.
123 - Zhihua Liu , Kaile Xie , 2021
Inspired by the recent achievements of the strong magnons- and spin textures-photons coupling via dipolar interaction, the coupling between magnons and the local resonances of spin textures through direct exchange interaction is expected but not realized yet. In this work, we demonstrated the coherent coupling between propagating magnons and local skyrmion resonances. Besides the Rabbi coupling gap (RCG) in the frequency field dispersion, a magnonic analog of polariton gap, polaragnonic band gap (PBG), is also observed in the frequency-wavenumber dispersion. The realization of coupling requires the gyrotropic skyrmion modes to satisfy not only their quantum number larger than one but also their chirality opposite to that of magnons. The observed PBG and RCG can be controlled to exist within different Brillouin zones (BZs) as well as at BZ boundaries. The coupling strength can approach the strong regime by selecting the wavenumber of propagating magnons. Our findings could provide a pure magnonic platform for investigating quantum optics phenomena in quantum information technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا