Do you want to publish a course? Click here

Resonant Raman scattering of single molecules under strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: phonon-dressed polaritons

84   0   0.0 ( 0 )
 Added by Stephen Hughes
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasmonic dimer cavities can induce extreme electric-field hot spots that allow one to access ultrastrong coupling regimes using Raman-type spectroscopy on single vibrating molecules. Using a generalized master equation, we study resonant Raman scattering in the strong coupling regime of cavity-QED, when also in the vibrational ultrastrong coupling regime, leading to phonon-dressed polaritons. The master equation rigorously includes spectral baths for the cavity and vibrational degrees of freedom, as well as a pure dephasing bath for the resonant two-level system, which play a significant role. Employing realistic parameters for gold dimer cavity modes, we investigate the emission spectra in several characteristic strong-coupling regimes, leading to extremely rich spectral resonances due to an interplay of phonon-modified polariton states and bath-induced resonances. We also show explicitly the failure of the standard master equation in these quantum nonlinear regimes.



rate research

Read More

81 - J. Li , A. Xuereb , N. Malossi 2015
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions, which act as an excellent approximation when the relative and center-of-mass position of the two membranes are much smaller than the cavity length. With these analytical solutions, one finds that extremely large optomechanical coupling of the membrane relative motion can be achieved in the limit of highly reflective membranes when the two membranes are placed very close to a resonance of the inner cavity formed by them. We also study the cavity finesse of the system and verify that, under the conditions of large coupling, it is not appreciably affected by the presence of the two membranes. The achievable large values of the ratio between the optomechanical coupling and the cavity decay rate, $g/kappa$, make this two-membrane system the simplest promising platform for implementing cavity optomechanics in the strong coupling regime.
114 - Qibin Zeng , Kaiyang Zeng 2021
Parametrically tuning the oscillation dynamics of coupled micro/nano-mechanical resonators through a mechanical pump scheme has recently attracted great attentions from fundamental physics to various applications. However, the special design of the coupled resonators and low dissipation operation conditions significantly restrict the wide application of this tuning technique. In this study, we will show that, under ambient conditions, mechanical pump can parametrically control the oscillation dynamics in a single commercial microcantilever resonator. A strong phonon-cavity coupling with cooperativity up to ~398 and normal-mode splitting are observed in the microcantilever. The strong parametric interaction of the phonon-cavity coupling enables using mechanical pump to achieve a 43 dB (3 dB) parametric amplification (cooling). By utilizing mechanical pump, the force sensitivity and signal-to-noise ratio of the frequency-modulation Kelvin Probe Force Microscopy can be significantly improved in the ambient environment. Furthermore, both single-mode and two-mode thermomechanical noise squeezing states can be created in the microcantilever via applying mechanical pump.
Strong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the much less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a cavity polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. The tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.
Strong coupling of plasmonic excitations and dipolar emitters, such as organic molecules, have been studied extensively in the last years. The questions whether strong coupling can be achieved with a single molecule only and how this is unambiguously proven are still under debate. A critical issue of plasmonic in contrast to photonic systems is additional excitonic line broadening, which is often neglected when modeling such systems. This has led to too optimistic design predictions or incorrect interpretation of ambiguous experimental data, for example in models relying on Maxwell solvers without self-consistent incorporation of line broadening effects. In this paper, we present a heuristic modeling approach for strongly coupled systems based on plasmonic nanoparticles and dipolar emitters that accounts for such broadening and elucidates on recent experiments with single emitters. We explicitly focus on a clear and intuitive classical description that utilizes well-established methods, easy to use within typical Maxwell solvers. The heuristic model (i) provides experimentally relevant numbers like emitter densities and spectra (ii) allows to discriminate systems, which can reach the strong coupling regime from those, which can not (iii) allows to identify optimization routes and (iv) nicely matches with experimental findings. In particular, we employ an approach related to quasi normal modes and extinction simulations where the excitonic system is represented by a frequency dependent permittivity. As examples, we investigate two configurations with many, but also single emitters, which have been studied in recent experiments.
Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissipation when the resonance is approached. We show in this letter that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in the strongly-coupled regime. Huge optomechanical coupling factors in the PetaHz/nm range are envisaged, three orders of magnitude larger than the backaction produced by the mechanical displacement of the cavity mirrors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا