Do you want to publish a course? Click here

Surface Energy of the Titan Aerosol Analog Tholin

106   0   0.0 ( 0 )
 Added by Xinting Yu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The photochemical haze produced in the upper atmosphere of Titan plays a key role in various atmospheric and surface processes on Titan. The surface energy, one important physical properties of the haze, is crucial for understanding the growth of the haze particles and can be used to predict their wetting behavior with solid and liquid species on Titan. We produced Titan analog haze materials, so-called tholin, with different energy sources and measured their surface energies through contact angle and direct force measurements. From the contact angle measurement, we found that the tholins produced by cold plasma and UV irradiation have total surface energy around 60-70 mJ/m2. The direct force measurement yields a total surface energy of ~66 mJ/m2 for plasma tholin. The surface energy of tholin is relatively high compared to common polymers, indicating its high cohesiveness. Therefore, the Titan haze particles would likely coagulate easily to form bigger particles, while the haze-derived surface sand particles would need higher wind speed to be mobilized because of the high interparticle cohesion. The high surface energy of tholins also makes them easily wettable by Titans atmospheric hydrocarbon condensates and surface liquids. Thus, the hazes particles are likely good cloud condensation nuclei (CCN) for hydrocarbon clouds (methane and ethane) to nucleate and grow. And if the hazes particles are denser compared to the lake liquids, they would likely sink into the lakes instead of forming a floating film to dampen the lake surface waves.



rate research

Read More

We retrieve vertical and meridional variations of methane mole fraction in Titans lower troposphere by re-analyzing near-infrared ground-based observations from 17 July 2014 UT (Adamkovics et al., 2016). We generate synthetic spectra using atmospheric methane profiles that do not contain supersaturation or discontinuities to fit the observations, and thereby retrieve minimum saturation altitudes and corresponding specific humidities in the boundary layer. We relate these in turn to surface-level relative humidities using independent surface temperature measurements. We also compare our results with general circulation model simulations to interpret and constrain the relationship between humidities and surface liquids. The results show that Titans lower troposphere is undersaturated at latitudes south of 60N, consistent with a dry surface there, but increases in humidity toward the north pole indicate appreciable surface liquid coverage. While our observations are consistent with considerably more liquid methane existing at the north pole than is present in observed lakes, a degeneracy between low-level methane and haze leads to substantial uncertainty in determining the extent of the source region.
From 2004 to 2017, the Cassini spacecraft orbited Saturn, completing 127 close flybys of its largest moon, Titan. Cassinis Composite Infrared Spectrometer (CIRS), one of 12 instruments carried on board, profiled Titan in the thermal infrared (7-1000 microns) throughout the entire 13-year mission. CIRS observed on both targeted encounters (flybys) and more distant opportunities, collecting 8.4 million spectra from 837 individual Titan observations over 3633 hours. Observations of multiple types were made throughout the mission, building up a vast mosaic picture of Titans atmospheric state across spatial and temporal domains. This paper provides a guide to these observations, describing each type and chronicling its occurrences and global-seasonal coverage. The purpose is to provide a resource for future users of the CIRS data set, as well as those seeking to put existing CIRS publications into the overall context of the mission, and to facilitate future inter-comparison of CIRS results with those of other Cassini instruments, and ground-based observations.
In this white paper, we present a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan exosphere to the deep interior, and we detail which instrumentation and mission scenarios should be used to answer them. Our intention is to formulate the science goals for the next generation of planetary missions to Titan in order to prepare the future exploration of the moon. The ESA L-class mission concept that we propose is composed of a Titan orbiter and at least an in situ element (lake lander and/or drone(s)).
Abbreviated. By selecting stars with similar ages and masses, the Young Suns Exoplanet Survey (YSES) aims to detect and characterize planetary-mass companions to solar-type host stars in the Scorpius-Centaurus association. Our survey is carried out with VLT/SPHERE with short exposure sequences on the order of 5 min per star per filter. The subtraction of the stellar point spread function (PSF) is based on reference star differential imaging (RDI) using the other targets in the survey in combination with principal component analysis. We report the discovery of YSES 2b, a planetary-mass companion to the K1 star YSES 2 (TYC 8984-2245-1). The primary has a Gaia EDR3 distance of 110 pc, and we derive a revised mass of $1.1,M_odot$ and an age of approximately 14 Myr. We detect the companion in two observing epochs southwest of the star at a position angle of 205$^circ$ and with a separation of $sim1.05$, which translates to a minimum physical separation of 115 au at the distance of the system. We derive a photometric planet mass of $6.3^{+1.6}_{-0.9},M_mathrm{Jup}$ using AMES-COND and AMES-dusty evolutionary models; this mass corresponds to a mass ratio of $q=(0.5pm0.1)$% with the primary. This is the lowest mass ratio of a direct imaging planet around a solar-type star to date. We discuss potential formation mechanisms and find that the current position of the planet is compatible with formation by disk gravitational instability, but its mass is lower than expected from numerical simulations. Formation via core accretion must have occurred closer to the star, yet we do not find evidence that supports the required outward migration, such as via scattering off another undiscovered companion in the system. YSES 2b is an ideal target for follow-up observations to further the understanding of the physical and chemical formation mechanisms of wide-orbit Jovian planets.
79 - Sergio Pilling 2012
Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (alpha, beta, and gamma) forms. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASAs Stardust spacecraft. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the alpha-glycine and beta-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by FTIR spectrometry at different proton fluences at under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at PUC-Rio, Brazil. The dissociation cross section of alpha-glycine was observed to be 2.5E-14 cm^-2, a value roughly 5 times higher than the dissociation cross section found for beta-glycine. The estimated half-lives of alpha-glycine and beta-glycine forms extrapolated to the Earth orbit environment are 9E5 and 4E6 years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar beta-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm^-1, tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in glycine crystals. Combining this finding with the fact that this form has the highest solubility among the other glycine polymorphs, we suggest that beta-glycine is the one most likely to have produced the first peptides on primitive Earth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا