Do you want to publish a course? Click here

Can Speaker Augmentation Improve Multi-Speaker End-to-End TTS?

109   0   0.0 ( 0 )
 Added by Erica Cooper
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Previous work on speaker adaptation for end-to-end speech synthesis still falls short in speaker similarity. We investigate an orthogonal approach to the current speaker adaptation paradigms, speaker augmentation, by creating artificial speakers and by taking advantage of low-quality data. The base Tacotron2 model is modified to account for the channel and dialect factors inherent in these corpora. In addition, we describe a warm-start training strategy that we adopted for Tacotron2 training. A large-scale listening test is conducted, and a distance metric is adopted to evaluate synthesis of dialects. This is followed by an analysis on synthesis quality, speaker and dialect similarity, and a remark on the effectiveness of our speaker augmentation approach. Audio samples are available online.



rate research

Read More

This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.
Voice activity detection (VAD) is an essential pre-processing step for tasks such as automatic speech recognition (ASR) and speaker recognition. A basic goal is to remove silent segments within an audio, while a more general VAD system could remove all the irrelevant segments such as noise and even unwanted speech from non-target speakers. We define the task, which only detects the speech from the target speaker, as speaker-dependent voice activity detection (SDVAD). This task is quite common in real applications and usually implemented by performing speaker verification (SV) on audio segments extracted from VAD. In this paper, we propose an end-to-end neural network based approach to address this problem, which explicitly takes the speaker identity into the modeling process. Moreover, inference can be performed in an online fashion, which leads to low system latency. Experiments are carried out on a conversational telephone dataset generated from the Switchboard corpus. Results show that our proposed online approach achieves significantly better performance than the usual VAD/SV system in terms of both frame accuracy and F-score. We also used our previously proposed segment-level metric for a more comprehensive analysis.
202 - Yan Deng , Lei He , Frank Soong 2018
Neural TTS has shown it can generate high quality synthesized speech. In this paper, we investigate the multi-speaker latent space to improve neural TTS for adapting the system to new speakers with only several minutes of speech or enhancing a premium voice by utilizing the data from other speakers for richer contextual coverage and better generalization. A multi-speaker neural TTS model is built with the embedded speaker information in both spectral and speaker latent space. The experimental results show that, with less than 5 minutes of training data from a new speaker, the new model can achieve an MOS score of 4.16 in naturalness and 4.64 in speaker similarity close to human recordings (4.74). For a well-trained premium voice, we can achieve an MOS score of 4.5 for out-of-domain texts, which is comparable to an MOS of 4.58 for professional recordings, and significantly outperforms single speaker result of 4.28.
In this work, we extend ClariNet (Ping et al., 2019), a fully end-to-end speech synthesis model (i.e., text-to-wave), to generate high-fidelity speech from multiple speakers. To model the unique characteristic of different voices, low dimensional trainable speaker embeddings are shared across each component of ClariNet and trained together with the rest of the model. We demonstrate that the multi-speaker ClariNet outperforms state-of-the-art systems in terms of naturalness, because the whole model is jointly optimized in an end-to-end manner.
Recently, an end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. It showed promising results for simulated speech mixtures consisting of various numbers of speakers. However, the model required prior knowledge of speaker profiles to perform speaker identification, which significantly limited the application of the model. In this paper, we extend the prior work by addressing the case where no speaker profile is available. Specifically, we perform speaker counting and clustering by using the internal speaker representations of the E2E SA-ASR model to diarize the utterances of the speakers whose profiles are missing from the speaker inventory. We also propose a simple modification to the reference labels of the E2E SA-ASR training which helps handle continuous multi-talker recordings well. We conduct a comprehensive investigation of the original E2E SA-ASR and the proposed method on the monaural LibriCSS dataset. Compared to the original E2E SA-ASR with relevant speaker profiles, the proposed method achieves a close performance without any prior speaker knowledge. We also show that the source-target attention in the E2E SA-ASR model provides information about the start and end times of the hypotheses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا