No Arabic abstract
The AutoSpeech challenge calls for automated machine learning (AutoML) solutions to automate the process of applying machine learning to speech processing tasks. These tasks, which cover a large variety of domains, will be shown to the automated system in a random order. Each time when the tasks are switched, the information of the new task will be hinted with its corresponding training set. Thus, every submitted solution should contain an adaptation routine which adapts the system to the new task. Compared to the first edition, the 2020 edition includes advances of 1) more speech tasks, 2) noisier data in each task, 3) a modified evaluation metric. This paper outlines the challenge and describe the competition protocol, datasets, evaluation metric, starting kit, and baseline systems.
We held the second installment of the VoxCeleb Speaker Recognition Challenge in conjunction with Interspeech 2020. The goal of this challenge was to assess how well current speaker recognition technology is able to diarise and recognize speakers in unconstrained or `in the wild data. It consisted of: (i) a publicly available speaker recognition and diarisation dataset from YouTube videos together with ground truth annotation and standardised evaluation software; and (ii) a virtual public challenge and workshop held at Interspeech 2020. This paper outlines the challenge, and describes the baselines, methods used, and results. We conclude with a discussion of the progress over the first installment of the challenge.
The notion of bounded rationality originated from the insight that perfectly rational behavior cannot be realized by agents with limited cognitive or computational resources. Research on bounded rationality, mainly initiated by Herbert Simon, has a longstanding tradition in economics and the social sciences, but also plays a major role in modern AI and intelligent agent design. Taking actions under bounded resources requires an agent to reflect on how to use these resources in an optimal way - hence, to reason and make decisions on a meta-level. In this paper, we will look at automated machine learning (AutoML) and related problems from the perspective of bounded rationality, essentially viewing an AutoML tool as an agent that has to train a model on a given set of data, and the search for a good way of doing so (a suitable ML pipeline) as deliberation on a meta-level.
We report our NTU-AISG Text-to-speech (TTS) entry systems for the Blizzard Challenge 2020 in this paper. There are two TTS tasks in this years challenge, one is a Mandarin TTS task, the other is a Shanghai dialect TTS task. We have participated both. One of the main challenges is to build TTS systems with low-resource constraints, particularly for the case of Shanghai dialect, of which about three hours data are available to participants. To overcome the constraint, we adopt an average-speaker modeling method. That is, we first employ external Mandarin data to train both End-to-end acoustic model and WaveNet vocoder, then we use Shanghai dialect to tune the acoustic model and WaveNet vocoder respectively. Apart from this, we have no Shanghai dialect lexicon despite syllable transcripts are provided for the training data. Since we are not sure if similar syllable transcripts are provided for the evaluation data during the training stage, we use Mandarin lexicon for Shanghai dialect instead. With the letter, as decomposed from the corresponding Mandarin syllable, as input, though the naturalness and original speaker similarity of the synthesized speech are good, subjective evaluation results indicate the intelligibility of the synthesized speech is deeply undermined for the Shanghai dialect TTS system.
This paper describes the NTNU ASR system participating in the Formosa Speech Recognition Challenge 2020 (FSR-2020) supported by the Formosa Speech in the Wild project (FSW). FSR-2020 aims at fostering the development of Taiwanese speech recognition. Apart from the issues on tonal and dialectical variations of the Taiwanese language, speech artificially contaminated with different types of real-world noise also has to be dealt with in the final test stage; all of these make FSR-2020 much more challenging than before. To work around the under-resourced issue, the main technical aspects of our ASR system include various deep learning techniques, such as transfer learning, semi-supervised learning, front-end speech enhancement and model ensemble, as well as data cleansing and data augmentation conducted on the training data. With the best configuration, our system obtains 13.1 % syllable error rate (SER) on the final-test set, achieving the first place among all participating systems on Track 3.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.