No Arabic abstract
Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect features in speech and text, such as the deletion of the copula in He {} running. In this paper, we introduce the task of dialect feature detection, and present two multitask learning approaches, both based on pretrained transformers. For most dialects, large-scale annotated corpora for these features are unavailable, making it difficult to train recognizers. We train our models on a small number of minimal pairs, building on how linguists typically define dialect features. Evaluation on a test set of 22 dialect features of Indian English demonstrates that these models learn to recognize many features with high accuracy, and that a few minimal pairs can be as effective for training as thousands of labeled examples. We also demonstrate the downstream applicability of dialect feature detection both as a measure of dialect density and as a dialect classifier.
We here summarize our experience running a challenge with open data for musical genre recognition. Those notes motivate the task and the challenge design, show some statistics about the submissions, and present the results.
Transformers have supplanted recurrent models in a large number of NLP tasks. However, the differences in their abilities to model different syntactic properties remain largely unknown. Past works suggest that LSTMs generalize very well on regular languages and have close connections with counter languages. In this work, we systematically study the ability of Transformers to model such languages as well as the role of its individual components in doing so. We first provide a construction of Transformers for a subclass of counter languages, including well-studied languages such as n-ary Boolean Expressions, Dyck-1, and its generalizations. In experiments, we find that Transformers do well on this subclass, and their learned mechanism strongly correlates with our construction. Perhaps surprisingly, in contrast to LSTMs, Transformers do well only on a subset of regular languages with degrading performance as we make languages more complex according to a well-known measure of complexity. Our analysis also provides insights on the role of self-attention mechanism in modeling certain behaviors and the influence of positional encoding schemes on the learning and generalization abilities of the model.
In this paper, we present a two-stage language identification (LID) system based on a shallow ResNet14 followed by a simple 2-layer recurrent neural network (RNN) architecture, which was used for Xunfei (iFlyTek) Chinese Dialect Recognition Challenge and won the first place among 110 teams. The system trains an acoustic model (AM) firstly with connectionist temporal classification (CTC) to recognize the given phonetic sequence annotation and then train another RNN to classify dialect category by utilizing the intermediate features as inputs from the AM. Compared with a three-stage system we further explore, our results show that the two-stage system can achieve high accuracy for Chinese dialects recognition under both short utterance and long utterance conditions with less training time.
Time Delay Neural Networks (TDNN)-based methods are widely used in dialect identification. However, in previous work with TDNN application, subtle variant is being neglected in different feature scales. To address this issue, we propose a new architecture, named dynamic multi-scale convolution, which consists of dynamic kernel convolution, local multi-scale learning, and global multi-scale pooling. Dynamic kernel convolution captures features between short-term and long-term context adaptively. Local multi-scale learning, which represents multi-scale features at a granular level, is able to increase the range of receptive fields for convolution operation. Besides, global multi-scale pooling is applied to aggregate features from different bottleneck layers in order to collect information from multiple aspects. The proposed architecture significantly outperforms state-of-the-art system on the AP20-OLR-dialect-task of oriental language recognition (OLR) challenge 2020, with the best average cost performance (Cavg) of 0.067 and the best equal error rate (EER) of 6.52%. Compared with the known best results, our method achieves 9% of Cavg and 45% of EER relative improvement, respectively. Furthermore, the parameters of proposed model are 91% fewer than the best known model.
While recurrent models have been effective in NLP tasks, their performance on context-free languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture important phenomena such as hierarchical structure in natural languages, this discrepancy in performance calls for an explanation. We study the performance of recurrent models on Dyck-n languages, a particularly important and well-studied class of CFLs. We find that while recurrent models generalize nearly perfectly if the lengths of the training and test strings are from the same range, they perform poorly if the test strings are longer. At the same time, we observe that recurrent models are expressive enough to recognize Dyck words of arbitrary lengths in finite precision if their depths are bounded. Hence, we evaluate our models on samples generated from Dyck languages with bounded depth and find that they are indeed able to generalize to much higher lengths. Since natural language datasets have nested dependencies of bounded depth, this may help explain why they perform well in modeling hierarchical dependencies in natural language data despite prior works indicating poor generalization performance on Dyck languages. We perform probing studies to support our results and provide comparisons with Transformers.