Do you want to publish a course? Click here

Possible coexistence of kinetic Alfven and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind

157   0   0.0 ( 0 )
 Added by Owen Roberts
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate compressive turbulence at sub-ion scales with measurements from the Magnetospheric MultiScale Mission. The tetrahedral configuration and high time resolution density data obtained by calibrating spacecraft potential allow an investigation of the turbulent density fluctuations in the solar wind and their three-dimensional structure in the sub-ion range. The wave-vector associated with the highest energy density at each spacecraft frequency is obtained by application of the Multi-point signal resonator technique to the four-point density data. The fluctuations show a strong wave-vector anisotropy $k_{perp}gg k_{parallel}$ where the parallel and perpendicular symbols are with respect to the mean magnetic field direction. The plasma frame frequencies show two populations, one below the proton cyclotron frequency $omega<Omega_{ci}$ consistent with kinetic Alfven wave (KAW) turbulence. The second component has higher frequencies $omega > Omega_{ci}$ consistent with ion Bernstein wave (IBW) turbulence. Alternatively, these fluctuations may constitute KAWs that have undergone multiple wave-wave interactions causing a broadening in the plasma frame frequencies. The scale-dependent kurtosis in this wave-vector region shows a reduction in intermittency at the small scales which can also be explained by the presence of wave activity. Our results suggest that small-scale turbulence exhibits linear-wave properties of kinetic Alfven and possibly ion-Bernstein/magnetosonic waves. Based on our results, we speculate that these waves may play a role in describing the observed reduction in intermittency at sub ion scales.



rate research

Read More

Compressive plasma turbulence is investigated at sub-ion scales in the solar wind using both the Fast Plasma Investigation (FPI) instrument on the Magnetospheric MultiScale mission (MMS), as well as using calibrated spacecraft potential data from the Spin Plane Double Probe (SDP) instrument. The data from FPI allow a measurement down to the sub-ion scale region ($f_{sc}gtrsim 1$ Hz) to be investigated before the instrumental noise becomes significant at a spacecraft frame frequency of $f_{sc}approx 3$Hz, whereas calibrated spacecraft potential allows a measurement up to $f_{sc}approx 40$Hz. In this work, we give a detailed description of density estimation in the solar wind using the spacecraft potential measurement from the SDP instrument on MMS. Several intervals of solar wind plasma have been processed using the methodology described which are made available. One of the intervals is investigated in more detail and the power spectral density of the compressive fluctuations is measured from the inertial range to the sub-ion range. The morphology of the density spectra can be explained by either a cascade of Alfven waves and slow waves at large scales and kinetic Alfven waves at sub-ion scales, or more generally by the Hall effect. Using electric field measurements the two hypotheses are discussed.
The nature of the plasma wave modes around the ion kinetic scales in highly Alfvenic slow solar wind turbulence is investigated using data from the NASAs Parker Solar Probe taken in the inner heliosphere, at 0.18 Astronomical Unit (AU) from the sun. The joint distribution of the normalized reduced magnetic helicity ${sigma}_m ({theta}_{RB}, {tau})$ is obtained, where ${theta}_{RB}$ is the angle between the local mean magnetic field and the radial direction and ${tau}$ is the temporal scale. Two populations around ion scales are identified: the first population has ${sigma}_m ({theta}_{RB}, {tau}) < 0$ for frequencies (in the spacecraft frame) ranging from 2.1 to 26 Hz for $60^{circ} < {theta}_{RB} < 130^{circ}$, corresponding to kinetic Alfven waves (KAWs), and the second population has ${sigma}_m ({theta}_{RB}, {tau}) > 0$ in the frequency range [1.4, 4.9] Hz for ${theta}_{RB} > 150^{circ}$, corresponding to Alfven ion Cyclotron Waves (ACWs). This demonstrates for the first time the co-existence of KAWs and ACWs in the slow solar wind in the inner heliosphere, which contrasts with previous observations in the slow solar wind at 1 AU. This discrepancy between 0.18 and 1 AU could be explained, either by i) a dissipation of ACWs via cyclotron resonance during their outward journey, or by ii) the high Alfvenicity of the slow solar wind at 0.18 AU that may be favorable for the excitation of ACWs.
446 - G. Q. Zhao , Y. Lin , X. Y. Wang 2020
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale turbulence shows that increasing helicity magnitudes correspond to steeper magnetic energy spectra. In particular, there exists a positive power-law correlation (with a slope $sim 0.4$) between the proton perpendicular temperature and the turbulent magnetic energy at scales $0.3 lesssim krho_p lesssim 1$, with $k$ being the wavenumber and $rho_p$ being the proton gyroradius. These findings present evidence of solar wind heating by the proton-scale turbulence. They also provide insight and observational constraint on the physics of turbulent dissipation in the solar wind.
The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a disruption scale $lambda_D$, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius $rho_i$, ion inertial length $d_i$, ion sound radius $rho_s$, proton-cyclotron resonance scale $rho_c$ and disruption scale $lambda_D$ as a function of $beta_{perp i}$. We find that the steepest spectral indices of the dissipation range occur when $beta_e$ is in the range of 0.1-1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 AU), in qualitative agreement with the reconnection model. In this range the break scale shows remarkably good correlation with $lambda_D$. Our findings suggest that, at least at low $beta_e$, reconnection may play an important role in the development of the dissipation range turbulent cascade and causes unusually steep (steeper than -3) spectral indices.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا