Do you want to publish a course? Click here

Sub-ion scale Compressive Turbulence in the Solar wind: MMS spacecraft potential observations

91   0   0.0 ( 0 )
 Added by Owen Roberts
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compressive plasma turbulence is investigated at sub-ion scales in the solar wind using both the Fast Plasma Investigation (FPI) instrument on the Magnetospheric MultiScale mission (MMS), as well as using calibrated spacecraft potential data from the Spin Plane Double Probe (SDP) instrument. The data from FPI allow a measurement down to the sub-ion scale region ($f_{sc}gtrsim 1$ Hz) to be investigated before the instrumental noise becomes significant at a spacecraft frame frequency of $f_{sc}approx 3$Hz, whereas calibrated spacecraft potential allows a measurement up to $f_{sc}approx 40$Hz. In this work, we give a detailed description of density estimation in the solar wind using the spacecraft potential measurement from the SDP instrument on MMS. Several intervals of solar wind plasma have been processed using the methodology described which are made available. One of the intervals is investigated in more detail and the power spectral density of the compressive fluctuations is measured from the inertial range to the sub-ion range. The morphology of the density spectra can be explained by either a cascade of Alfven waves and slow waves at large scales and kinetic Alfven waves at sub-ion scales, or more generally by the Hall effect. Using electric field measurements the two hypotheses are discussed.



rate research

Read More

We investigate compressive turbulence at sub-ion scales with measurements from the Magnetospheric MultiScale Mission. The tetrahedral configuration and high time resolution density data obtained by calibrating spacecraft potential allow an investigation of the turbulent density fluctuations in the solar wind and their three-dimensional structure in the sub-ion range. The wave-vector associated with the highest energy density at each spacecraft frequency is obtained by application of the Multi-point signal resonator technique to the four-point density data. The fluctuations show a strong wave-vector anisotropy $k_{perp}gg k_{parallel}$ where the parallel and perpendicular symbols are with respect to the mean magnetic field direction. The plasma frame frequencies show two populations, one below the proton cyclotron frequency $omega<Omega_{ci}$ consistent with kinetic Alfven wave (KAW) turbulence. The second component has higher frequencies $omega > Omega_{ci}$ consistent with ion Bernstein wave (IBW) turbulence. Alternatively, these fluctuations may constitute KAWs that have undergone multiple wave-wave interactions causing a broadening in the plasma frame frequencies. The scale-dependent kurtosis in this wave-vector region shows a reduction in intermittency at the small scales which can also be explained by the presence of wave activity. Our results suggest that small-scale turbulence exhibits linear-wave properties of kinetic Alfven and possibly ion-Bernstein/magnetosonic waves. Based on our results, we speculate that these waves may play a role in describing the observed reduction in intermittency at sub ion scales.
The nature of the plasma wave modes around the ion kinetic scales in highly Alfvenic slow solar wind turbulence is investigated using data from the NASAs Parker Solar Probe taken in the inner heliosphere, at 0.18 Astronomical Unit (AU) from the sun. The joint distribution of the normalized reduced magnetic helicity ${sigma}_m ({theta}_{RB}, {tau})$ is obtained, where ${theta}_{RB}$ is the angle between the local mean magnetic field and the radial direction and ${tau}$ is the temporal scale. Two populations around ion scales are identified: the first population has ${sigma}_m ({theta}_{RB}, {tau}) < 0$ for frequencies (in the spacecraft frame) ranging from 2.1 to 26 Hz for $60^{circ} < {theta}_{RB} < 130^{circ}$, corresponding to kinetic Alfven waves (KAWs), and the second population has ${sigma}_m ({theta}_{RB}, {tau}) > 0$ in the frequency range [1.4, 4.9] Hz for ${theta}_{RB} > 150^{circ}$, corresponding to Alfven ion Cyclotron Waves (ACWs). This demonstrates for the first time the co-existence of KAWs and ACWs in the slow solar wind in the inner heliosphere, which contrasts with previous observations in the slow solar wind at 1 AU. This discrepancy between 0.18 and 1 AU could be explained, either by i) a dissipation of ACWs via cyclotron resonance during their outward journey, or by ii) the high Alfvenicity of the slow solar wind at 0.18 AU that may be favorable for the excitation of ACWs.
Studies of solar wind turbulence traditionally employ high-resolution magnetic field data, but high-resolution measurements of ion and electron moments have been possible only recently. We report the first turbulence studies of ion and electron velocity moments accumulated in pristine solar wind by the Fast Particle Investigation instrument onboard the Magnetospheric Multiscale (MMS) Mission. Use of these data is made possible by a novel implementation of a frequency domain Hampel filter, described herein. After presenting procedures for processing of the data, we discuss statistical properties of solar wind turbulence extending into the kinetic range. Magnetic field fluctuations dominate electron and ion velocity fluctuation spectra throughout the energy-containing and inertial ranges. However, a multi-spacecraft analysis indicates that at scales shorter than the ion-inertial length, electron velocity fluctuations become larger than ion velocity and magnetic field fluctuations. The kurtosis of ion velocity peaks around few ion-inertial lengths and returns to near gaussian value at sub-ion scales.
446 - G. Q. Zhao , Y. Lin , X. Y. Wang 2020
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale turbulence shows that increasing helicity magnitudes correspond to steeper magnetic energy spectra. In particular, there exists a positive power-law correlation (with a slope $sim 0.4$) between the proton perpendicular temperature and the turbulent magnetic energy at scales $0.3 lesssim krho_p lesssim 1$, with $k$ being the wavenumber and $rho_p$ being the proton gyroradius. These findings present evidence of solar wind heating by the proton-scale turbulence. They also provide insight and observational constraint on the physics of turbulent dissipation in the solar wind.
The scaling of the turbulent spectra provides a key measurement that allows to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in-situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the MHD and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using the high-resolution data in the inner heliosphere from Parker Solar Probe (PSP) mission, we find that the sub-ion scales (i.e., at the frequency f ~ [2, 9] Hz) follow a power-law spectrum f^a with a spectral index a varying between -3 and -5.7. Our results also show that there is a trend toward and anti-correlation between the spectral slopes and the power amplitudes at the MHD scales, in agreement with previous studies: the higher the power amplitude the steeper the spectrum at sub-ion scales. A similar trend toward an anti-correlation between steep spectra and increasing normalized cross helicity is found, in agreement with previous theoretical predictions about the imbalanced solar wind. We discuss the ubiquitous nature of the ion transition range in solar wind turbulence in the inner heliosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا