Do you want to publish a course? Click here

Continuous phase transition between Neel and valence bond solid phases in a J-Q-like spin ladder system

121   0   0.0 ( 0 )
 Added by Takuhiro Ogino
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a quantum phase transition between a Neel phase and a valence bond solid (VBS) phase, in each of which a different Z2 symmetry is broken, in a spin-1/2 two-leg XXZ ladder with a four-spin interaction. The model can be viewed as a one-dimensional variant of the celebrated J-Q model on a square lattice. By means of variational uniform matrix product state calculations and an effective field theory, we determine the phase diagram of the model, and present evidences that the Neel-VBS transition is continuous and belongs to the Gaussian universality class with the central charge c=1. In particular, the critical exponents $beta, eta,$ and, $ u$ are found to satisfy the constraints expected for a Gaussian transition within numerical accuracy. These exponents do not detectably change along the phase boundary while they are in general allowed to do so for the Gaussian class.



rate research

Read More

We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the density matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime, for moderate to large ring exchanges we find a spin Bose-metal phase with a spinon Fermi sea consisting of three partially filled bands. Going away from the triangular towards the square lattice regime, we find a staggered dimer phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless rung phase. We also discuss parent states and a possible phase diagram in two dimensions.
A molecular Mott insulator $kappa$-(ET)$_2$B(CN)$_4$ [ET = bis(ethylenedithio)tetrathiafulvalene] with a distorted triangular lattice exhibits a quantum disordered state with gapped spin excitation in the ground state. $^{13}$C nuclear magnetic resonance, magnetization, and magnetic torque measurements reveal that magnetic field suppresses valence bond order and induces long-range magnetic order above a critical field $sim 8$ T. The nuclear spin-lattice relaxation rate $1/T_1$ shows persistent evolution of antiferromagnetic correlation above the transition temperature, highlighting a quantum spin liquid state with fractional excitations. The field-induced transition as observed in the spin-Peierls phase suggests that the valence bond order transition is driven through renormalized one-dimensionality and spin-lattice coupling.
293 - Bowen Zhao , Jun Takahashi , 2020
We use quantum Monte Carlo simulations to study a quantum $S=1/2$ spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Neel antiferromagnet (AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid (sVBS). By continuously varying a parameter, the sVBS--AFM and AFM--cVBS boundaries merge into a direct sVBS--cVBS transition. Unlike previous models with putative deconfined AFM--cVBS transitions, e.g., the standard $J$-$Q$ model, in our extended $J$-$Q$ model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically $Z_4$ symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order the clock-like $Z_4$ fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like. We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
Recent sign-problem-free quantum Monte Carlo simulations of (2+1)-dimensional lattice quantum electrodynamics (QED$_3$) with $N_f$ flavors of fermions on the square lattice have found evidence of continuous quantum phase transitions between a critical phase and a gapped valence-bond-solid (VBS) phase for flavor numbers $N_f=4$, $6$, and $8$. We derive the critical theory for these transitions, the chiral $O(2)$ QED$_3$-Gross-Neveu model, and show that the latter is equivalent to the gauged Nambu--Jona-Lasinio model. Using known large-$N_f$ results for the latter, we estimate the order parameter anomalous dimension and the correlation length exponent for the transitions mentioned above. We obtain large-$N_f$ results for the dimensions of fermion bilinear operators, in both the gauged and ungauged chiral $O(2)$ Gross-Neveu models, which respectively describe the long-distance power-law decay of two-particle correlation functions at the VBS transition in lattice QED$_3$ and the Kekule-VBS transition for correlated fermions on the honeycomb lattice.
Elucidating the phase diagram of lattice gauge theories with fermionic matter in 2+1 dimensions has become a problem of considerable interest in recent years, motivated by physical problems ranging from chiral symmetry breaking in high-energy physics to fractionalized phases of strongly correlated materials in condensed matter physics. For a sufficiently large number $N_f$ of flavors of four-component Dirac fermions, recent sign-problem-free quantum Monte Carlo studies of lattice quantum electrodynamics (QED$_3$) on the square lattice have found evidence for a continuous quantum phase transition between a power-law correlated conformal QED$_3$ phase and a confining valence-bond-solid phase with spontaneously broken point-group symmetries. The critical continuum theory of this transition was shown to be the $O(2)$ QED$_3$-Gross-Neveu model, equivalent to the gauged Nambu-Jona-Lasinio model, and critical exponents were computed to first order in the large-$N_f$ expansion and the $epsilon$ expansion. We extend these studies by computing critical exponents to second order in the large-$N_f$ expansion and to four-loop order in the $epsilon$ expansion below four spacetime dimensions. In the latter context, we also explicitly demonstrate that the discrete $mathbb{Z}_4$ symmetry of the valence-bond-solid order parameter is dynamically enlarged to a continuous $O(2)$ symmetry at criticality for all values of $N_f$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا