No Arabic abstract
We construct Markov partitions for non-invertible and/or singular nonuniformly hyperbolic systems defined on higher dimensional Riemannian manifolds. The generality of the setup covers classical examples not treated so far, such as geodesic flows in closed manifolds, multidimensional billiard maps, and Viana maps, and includes all the recent results of the literature. We also provide a wealth of applications.
This survey describes the recent advances in the construction of Markov partitions for nonuniformly hyperbolic systems. One important feature of this development comes from a finer theory of nonuniformly hyperbolic systems, which we also describe. The Markov partition defines a symbolic extension that is finite-to-one and onto a non-uniformly hyperbolic locus, and this provides dynamical and statistical consequences such as estimates on the number of closed orbits and properties of equilibrium measures. The class of systems includes diffeomorphisms, flows, and maps with singularities.
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural geometrical assumptions on the underlying space $M$, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to $D$. The results apply to non-uniformly hyperbolic planar billiards, e.g. Bunimovich stadia.
Given a piecewise $C^{1+beta}$ map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinuities exponentially fast almost surely. More specifically, we code the lift of these measures in the natural extension of the map.
We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs $fcolon (X,x_0)to (X,x_0)$, where $X$ is a complex surface having $x_0$ as a normal singularity. We prove that as long as $x_0$ is not a cusp singularity of $X$, then it is possible to find arbitrarily high modifications $picolon X_pito (X,x_0)$ such that the dynamics of $f$ (or more precisely of $f^N$ for $N$ big enough) on $X_pi$ is algebraically stable. This result is proved by understanding the dynamics induced by $f$ on a space of valuations associated to $X$; in fact, we are able to give a strong classification of all the possible dynamical behaviors of $f$ on this valuation space. We also deduce a precise description of the behavior of the sequence of attraction rates for the iterates of $f$. Finally, we prove that in this setting the first dynamical degree is always a quadratic integer.
We define higher pentagram maps on polygons in $P^d$ for any dimension $d$, which extend R.Schwartzs definition of the 2D pentagram map. We prove their integrability by presenting Lax representations with a spectral parameter for scale invariant maps. The corresponding continuous limit of the pentagram map in dimension $d$ is shown to be the $(2,d+1)$-equation of the KdV hierarchy, generalizing the Boussinesq equation in 2D. We also study in detail the 3D case, where we prove integrability for both closed and twisted polygons and describe the spectral curve, first integrals, the corresponding tori and the motion along them, as well as an invariant symplectic structure.