No Arabic abstract
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural geometrical assumptions on the underlying space $M$, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to $D$. The results apply to non-uniformly hyperbolic planar billiards, e.g. Bunimovich stadia.
We construct Markov partitions for non-invertible and/or singular nonuniformly hyperbolic systems defined on higher dimensional Riemannian manifolds. The generality of the setup covers classical examples not treated so far, such as geodesic flows in closed manifolds, multidimensional billiard maps, and Viana maps, and includes all the recent results of the literature. We also provide a wealth of applications.
This survey describes the recent advances in the construction of Markov partitions for nonuniformly hyperbolic systems. One important feature of this development comes from a finer theory of nonuniformly hyperbolic systems, which we also describe. The Markov partition defines a symbolic extension that is finite-to-one and onto a non-uniformly hyperbolic locus, and this provides dynamical and statistical consequences such as estimates on the number of closed orbits and properties of equilibrium measures. The class of systems includes diffeomorphisms, flows, and maps with singularities.
Given a piecewise $C^{1+beta}$ map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinuities exponentially fast almost surely. More specifically, we code the lift of these measures in the natural extension of the map.
In the context of non-uniformly expanding maps, possibly with the presence of a critical set, we prove the existence of finitely many ergodic equilibrium states for hyperbolic potentials. Moreover, the equilibrium states are expanding measures. The technique consists in using an inducing scheme in a finite Markov structure with infinitely many symbols to code the dynamics to obtain an equilibrium state for the associated symbolic dynamics and then projecting it to obtain an equilibrium state for the original map.
We prove that generic fiber-bunched and Holder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a u-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched cocycles.